Last modified by pierstanpaolucci on 2023/06/29 18:29

From version 31.1
edited by robing
on 2021/09/28 14:27
Change comment: There is no comment for this version
To version 25.1
edited by cristianocapone
on 2021/09/23 13:36
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.robing
1 +XWiki.cristianocapone
Content
... ... @@ -3,7 +3,7 @@
3 3  (% class="container" %)
4 4  (((
5 5  (% class="lead" id="HInteractiveExplorationofBrainStatesandSpatio-TemporalActivityPatternsinData-ConstrainedSimulations" %)
6 -Open the Lab link on the left to explore brain states and spatio-temporal cortical activity patterns on your own.
6 +Open the Lab link on the left to explore brain states and spatio-temporal cortical activity patterns on your own
7 7  )))
8 8  )))
9 9  
... ... @@ -25,34 +25,18 @@
25 25  
26 26  The experimental data set from which the model has been inferred has been provided by LENS and it is available in the EBRAINS KG (2).
27 27  
28 -The analyses of slow-wave features in the experimental and modeled data were based on the analysis pipeline design presented in (3).
28 +The predecessor of this model can be found at (3).
29 29  
30 -The predecessor of this model can be found at (4).
30 +The latest version of the code presented in the drive of this collab can be found at (4).
31 31  
32 -The latest version of the code presented in the drive of this collab can be found at (5).
32 +(1) Capone, C. et al. (2021) “Simulations Approaching Data: Cortical Slow Waves in Inferred Models of the Whole Hemisphere of Mouse” arXiv:2104.07445 [[https:~~/~~/arxiv.org/abs/2104.07445>>https://arxiv.org/abs/2104.07445]]
33 33  
34 -**Acknowledgment**
35 -
36 -This model is developed in the framework of the "Slow Waves, Brain States Transitions, Cognitive Functions and Complexity" Use Case collaboration that aims to the integration of experimental data, models and analysis pipelines in a multi-scale, multi-methodology approach.
37 -
38 -"Slow Waves, Brain States Transitions, Cognitive Functions and Complexity" Use Case Coordinator/s: Pier Stanislao Paolucci, Michael Denker. Technical Coordinators: Giulia De Bonis, Robin Gutzen, Elena Pastorelli, Arnau Manasanch Berengué
39 -
40 -Use Case Authors: Giulia De Bonis, Robin Gutzen, Cristiano Capone, Chiara De Luca, Anna Letizia Allegra Mascaro, Francesco Resta, Elena Pastorelli, Arnau Manasanch Berengué, Andrew Davison, Johan Storm, Alessandro Arena, Andrea Pigorini, Thierry Nieus, Ezequiel Mikulan, Francesco Pavone, Marcello Massimini, Maurizio Mattia, Michael Denker, Pier Stanislao Paolucci, Alain Destexhe, Maria V. Sanchez-Vives.
41 -
42 -Institutions: INFN, JUELICH, IDIBAPS, ISS, UMIL, LENS, UiO, CNRS, UNIROMA1.
43 -
44 -**References**
45 -
46 -(1) Cristiano Capone, Chiara De Luca, Giulia De Bonis, Elena Pastorelli, Anna Letizia Allegra Mascaro, Francesco Resta, Francesco Pavone, Pier Stanislao Paolucci (2021) “Simulations Approaching Data: Cortical Slow Waves in Inferred Models of the Whole Hemisphere of Mouse” arXiv:2104.07445 [[https:~~/~~/arxiv.org/abs/2104.07445>>https://arxiv.org/abs/2104.07445]]
47 -
48 48  (2) Resta, F., Allegra Mascaro, A. L., & Pavone, F. (2020). //Study of Slow Waves (SWs) propagation through wide-field calcium imaging of the right cortical hemisphere of GCaMP6f mice// [Data set]. EBRAINS. [[DOI: 10.25493/3E6Y-E8G>>url:https://doi.org/10.25493%2F3E6Y-E8G]]
49 49  
50 -(3) Robin Gutzen, Giulia De Bonis, Elena Pastorelli, Cristiano Capone, Chiara De Luca, Glynis Mattheisen, Anna Letizia Allegra Mascaro, Francesco Resta, Francesco Saverio Pavone, Maria V. Sanchez-Vives, Maurizio Mattia, Sonja Grün, Andrew Davison, Pier Stanislao Paolucci, Michael Denker (2020). //Building adaptable and reusable pipelines for investigating the features of slow cortical rhythms across scales, methods, and species//. Bernstein Conference. DOI: [[10.12751/nncn.bc2020.0030>>http://doi.org/10.12751/nncn.bc2020.0030]]
36 +(3) Mean Field Simulation of whole mouse hemisphere with parameters inferred from optical recordings [[https:~~/~~/search.kg.ebrains.eu/instances/e572362f-9461-4f9d-81e2-b69cd44185f4>>https://search.kg.ebrains.eu/instances/e572362f-9461-4f9d-81e2-b69cd44185f4]]
51 51  
52 -(4) Mean Field Simulation of whole mouse hemisphere with parameters inferred from optical recordings [[https:~~/~~/search.kg.ebrains.eu/instances/e572362f-9461-4f9d-81e2-b69cd44185f4>>https://search.kg.ebrains.eu/instances/e572362f-9461-4f9d-81e2-b69cd44185f4]]
53 -
54 54  (% class="wikigeneratedid" id="H" %)
55 -(5) [[https:~~/~~/github.com/APE-group/InteractiveExplorationBrainStates>>https://github.com/APE-group/InteractiveExplorationBrainStates]]
39 +(4) [[https:~~/~~/github.com/APE-group/InteractiveExplorationBrainStates>>https://github.com/APE-group/InteractiveExplorationBrainStates]]
56 56  )))
57 57  
58 58  (% class="col-xs-12 col-sm-4" %)
Collaboratory.Apps.Collab.Code.CollabClass[0]
Description
... ... @@ -1,1 +1,1 @@
1 -A Jupyter notebook where the user can interactively change the neuromodulated fatigue parameters and observe in real-time the emergence of different categories of slow-wave wave-propagation patterns and the transition to an asynchronous regime on a columnar mean-field model equipped with lateral connections inferred from experimentally acquired cortical activity. Dorsal view of a mouse cortical hemisphere sampled by pixels of 100-micron size over a 25 mm^2 field of view.
1 +A jupyter lab notebook where the user can interactively change the neuromodulated fatigue parameters and observe in real-time the emergence of different categories of slow-wave wave-propagation patterns and the transition to an asynchronous regime on a columnar mean-field model equipped with lateral connections inferred from experimentally acquired cortical activity. Dorsal view of a mouse cortical hemisphere sampled by pixels of 100-micron size over a 25 mm^2 field of view.