Changes for page L2L - Hyper parameter optimization framework
Last modified by yegenogl on 2023/07/10 12:06
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -18,7 +18,7 @@ 18 18 This workshop features a session on a hyper-parameter optimization framework implementing the concept of Learning to Learn (L2L). This framework provides a selection of different optimization algorithms and makes use of multiple high-performance computing back-ends (multi nodes, GPUs) to do vast parameter space explorations in an automated and parallel fashion (Yegenoglu et al. 2022). During this session, you will learn about the installation and use of this framework within EBRAINS. A TVB (Sanz Leon et al. 2013) simulation used in a study for a scale-integrated understanding of conscious and unconscious brain states and their mechanisms (Goldman et al. 2021) will serve as an example. In this study a set of 5 model variables has been explored, to find optimal parametrization for synchronous and a-synchronous brain states. Participants will learn how to launch a TVB simulation on Fenix’s high performing compute GPU backends using Unicore. 19 19 20 20 21 -For the [[OCNS 2023 tutorial>>https:// cns2023.sched.com/event/1NCef/t12-vast-parameter-space-exploration-using-l2l-on-ebrains]]:21 +For the [[OCNS 2023 tutorial>>https://sched.co/1NCef]]: 22 22 23 23 * Please create a [[JuDoor account >>https://judoor.fz-juelich.de]] 24 24 * Register to this project: [[https:~~/~~/judoor.fz-juelich.de/projects/join/training2323>>https://judoor.fz-juelich.de/projects/join/training2323]]