Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 11.1
edited by manuelmenendez
on 2025/02/02 21:31
Change comment: There is no comment for this version
To version 22.1
edited by manuelmenendez
on 2025/02/15 12:55
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,189 +1,106 @@
1 -==== **Overview** ====
1 +**Neurodiagnoses AI** is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. Building upon the Florey Dementia Index (FDI) methodology, it now encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)**, which standardizes biomarker classification across all neurodegenerative diseases, facilitating cross-disease AI training.
2 2  
3 -This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**.
3 +**Neuromarker: Generalized Biomarker Ontology**
4 4  
5 -=== **Workflow** ===
5 +Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration.
6 6  
7 -1. (((
8 -**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/users/manuelmenendezgonzalez/projects/1/views/1]]**
7 +**Core Biomarker Categories**
9 9  
10 -* Create a **GitHub repository** for AI scripts and models.
11 -* Use **GitHub Projects** to manage research milestones.
12 -)))
13 -1. (((
14 -**We Use EBRAINS for Data & Collaboration**
9 +Within the Neurodiagnoses AI framework, biomarkers are categorized as follows:
15 15  
16 -* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**.
17 -* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models.
18 -* Use **EBRAINS Wiki** for structured documentation and research discussion.
19 -)))
11 +|=**Category**|=**Description**
12 +|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic)
13 +|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein)
14 +|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL
15 +|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers
16 +|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers
17 +|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS)
18 +|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores
19 +|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities
20 20  
21 -----
21 +**Integrating External Databases into Neurodiagnoses**
22 22  
23 -=== **1. Data Integration** ===
23 +To enhance diagnostic precision, Neurodiagnoses AI incorporates data from multiple biomedical and neurological research databases. Researchers can integrate external datasets by following these steps:
24 24  
25 -==== **Data Sources** ====
25 +1. (((
26 +**Register for Access**
26 26  
27 -**Biomedical Ontologies & Databases:**
28 +* Each external database requires individual registration and access approval.
29 +* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses.
30 +* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data.
31 +)))
32 +1. (((
33 +**Download & Prepare Data**
28 28  
29 -* **Human Phenotype Ontology (HPO)** for symptom annotation.
30 -* **Gene Ontology (GO)** for molecular and cellular processes.
35 +* Download datasets while adhering to database usage policies.
36 +* (((
37 +Ensure files meet Neurodiagnoses format requirements:
31 31  
32 -**Dimensionality Reduction and Interpretability:**
39 +|=**Data Type**|=**Accepted Formats**
40 +|**Tabular Data**|.csv, .tsv
41 +|**Neuroimaging**|.nii, .dcm
42 +|**Genomic Data**|.fasta, .vcf
43 +|**Clinical Metadata**|.json, .xml
44 +)))
45 +* (((
46 +**Mandatory Fields for Integration**:
33 33  
34 -* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**.
35 -* **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts.
48 +* Subject ID: Unique patient identifier
49 +* Diagnosis: Standardized disease classification
50 +* Biomarkers: CSF, plasma, or imaging biomarkers
51 +* Genetic Data: Whole-genome or exome sequencing
52 +* Neuroimaging Metadata: MRI/PET acquisition parameters
53 +)))
54 +)))
55 +1. (((
56 +**Upload Data to Neurodiagnoses**
36 36  
37 -**Neuroimaging & EEG/MEG Data:**
58 +* (((
59 +**Option 1: Upload to EBRAINS Bucket**
38 38  
39 -* **MRI volumetric measures** for brain atrophy tracking.
40 -* **EEG functional connectivity patterns** (AI-Mind).
61 +* Location: EBRAINS Neurodiagnoses Bucket
62 +* Ensure correct metadata tagging before submission.
63 +)))
64 +* (((
65 +**Option 2: Contribute via GitHub Repository**
41 41  
42 -**Clinical & Biomarker Data:**
67 +* Location: GitHub Data Repository
68 +* Create a new folder under /data/ and include a dataset description.
69 +* For large datasets, contact project administrators before uploading.
70 +)))
71 +)))
72 +1. (((
73 +**Integrate Data into AI Models**
43 43  
44 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light).
45 -* **Sleep monitoring and actigraphy data** (ADIS).
75 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts.
76 +* Standardize neuroimaging and biomarker formats using harmonization tools.
77 +* Utilize machine learning models to handle missing data and feature extraction.
78 +* Train AI models with newly integrated patient cohorts.
46 46  
47 -**Federated Learning Integration:**
80 +**Reference**: See docs/data_processing.md for detailed instructions.
81 +)))
48 48  
49 -* **Secure multi-center data harmonization** (PROMINENT).
83 +**AI-Driven Biomarker Categorization**
50 50  
51 -----
85 +Neurodiagnoses employs advanced AI models for biomarker classification:
52 52  
53 -==== **Annotation System for Multi-Modal Data** ====
87 +|=**Model Type**|=**Application**
88 +|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases
89 +|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers
90 +|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data
54 54  
55 -To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will:
92 +**Collaboration & Partnerships**
56 56  
57 -* **Assign standardized metadata tags** to diagnostic features.
58 -* **Provide contextual explanations** for AI-based classifications.
59 -* **Track temporal disease progression annotations** to identify long-term trends.
94 +Neurodiagnoses actively seeks partnerships with data providers to:
60 60  
61 -----
96 +* Enable API-based data integration for real-time processing.
97 +* Co-develop harmonized AI-ready datasets with standardized annotations.
98 +* Secure funding opportunities through joint grant applications.
62 62  
63 -=== **2. AI-Based Analysis** ===
100 +**Interested in Partnering?**
64 64  
65 -==== **Machine Learning & Deep Learning Models** ====
102 +If you represent a research consortium or database provider, reach out to explore data-sharing agreements.
66 66  
67 -**Risk Prediction Models:**
104 +**Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]
68 68  
69 -* **LETHE’s cognitive risk prediction model** integrated into the annotation framework.
70 -
71 -**Biomarker Classification & Probabilistic Imputation:**
72 -
73 -* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**.
74 -
75 -**Neuroimaging Feature Extraction:**
76 -
77 -* **MRI & EEG data** annotated with **neuroanatomical feature labels**.
78 -
79 -==== **AI-Powered Annotation System** ====
80 -
81 -* Uses **SHAP-based interpretability tools** to explain model decisions.
82 -* Generates **automated clinical annotations** in structured reports.
83 -* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**).
84 -
85 -----
86 -
87 -=== **3. Diagnostic Framework & Clinical Decision Support** ===
88 -
89 -==== **Tridimensional Diagnostic Axes** ====
90 -
91 -**Axis 1: Etiology (Pathogenic Mechanisms)**
92 -
93 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**.
94 -* **AI-assisted annotation** provides **causal interpretations** for clinical use.
95 -
96 -**Axis 2: Molecular Markers & Biomarkers**
97 -
98 -* **Integration of CSF, blood, and neuroimaging biomarkers**.
99 -* **Structured annotation** highlights **biological pathways linked to diagnosis**.
100 -
101 -**Axis 3: Neuroanatomoclinical Correlations**
102 -
103 -* **MRI and EEG data** provide anatomical and functional insights.
104 -* **AI-generated progression maps** annotate **brain structure-function relationships**.
105 -
106 -----
107 -
108 -=== **4. Computational Workflow & Annotation Pipelines** ===
109 -
110 -==== **Data Processing Steps** ====
111 -
112 -**Data Ingestion:**
113 -
114 -* **Harmonized datasets** stored in **EBRAINS Bucket**.
115 -* **Preprocessing pipelines** clean and standardize data.
116 -
117 -**Feature Engineering:**
118 -
119 -* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**.
120 -
121 -**AI-Generated Annotations:**
122 -
123 -* **Automated tagging** of diagnostic features in **structured reports**.
124 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions.
125 -
126 -**Clinical Decision Support Integration:**
127 -
128 -* **AI-annotated findings** fed into **interactive dashboards**.
129 -* **Clinicians can adjust, validate, and modify annotations**.
130 -
131 -----
132 -
133 -=== **5. Validation & Real-World Testing** ===
134 -
135 -==== **Prospective Clinical Study** ====
136 -
137 -* **Multi-center validation** of AI-based **annotations & risk stratifications**.
138 -* **Benchmarking against clinician-based diagnoses**.
139 -* **Real-world testing** of AI-powered **structured reporting**.
140 -
141 -==== **Quality Assurance & Explainability** ====
142 -
143 -* **Annotations linked to structured knowledge graphs** for improved transparency.
144 -* **Interactive annotation editor** allows clinicians to validate AI outputs.
145 -
146 -----
147 -
148 -=== **6. Collaborative Development** ===
149 -
150 -The project is **open to contributions** from **researchers, clinicians, and developers**.
151 -
152 -**Key tools include:**
153 -
154 -* **Jupyter Notebooks**: For data analysis and pipeline development.
155 -** Example: **probabilistic imputation**
156 -* **Wiki Pages**: For documenting methods and results.
157 -* **Drive and Bucket**: For sharing code, data, and outputs.
158 -* **Collaboration with related projects**:
159 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment**
160 -
161 -----
162 -
163 -=== **7. Tools and Technologies** ===
164 -
165 -==== **Programming Languages:** ====
166 -
167 -* **Python** for AI and data processing.
168 -
169 -==== **Frameworks:** ====
170 -
171 -* **TensorFlow** and **PyTorch** for machine learning.
172 -* **Flask** or **FastAPI** for backend services.
173 -
174 -==== **Visualization:** ====
175 -
176 -* **Plotly** and **Matplotlib** for interactive and static visualizations.
177 -
178 -==== **EBRAINS Services:** ====
179 -
180 -* **Collaboratory Lab** for running Notebooks.
181 -* **Buckets** for storing large datasets.
182 -
183 -----
184 -
185 -=== **Why This Matters** ===
186 -
187 -* **The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.**
188 -* **It enables real-time tracking of disease progression across the three diagnostic axes.**
189 -* **It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.**
106 +
workflow neurodiagnoses.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.manuelmenendez
Size
... ... @@ -1,0 +1,1 @@
1 +157.5 KB
Content