Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 12.1
edited by manuelmenendez
on 2025/02/08 17:22
on 2025/02/08 17:22
Change comment:
There is no comment for this version
To version 28.1
edited by manuelmenendez
on 2025/03/14 08:31
on 2025/03/14 08:31
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,189 +1,216 @@ 1 - ====**Overview**====1 +**Neurodiagnoses AI** is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. It encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker) **and** Disease Knowledge Transfer (DKT)**, which standardizes disease and biomarker classification across all CNS diseases, facilitating cross-disease AI training. 2 2 3 - This project develops a**tridimensional diagnostic framework** for **CNS diseases**, incorporating**AI-powered annotation tools** to improve**interpretability, standardization, and clinical utility**. Themethodologyintegrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarkerdatasets**, and applies **machine learning models** toenerate**structured, explainable diagnostic outputs**.3 +**Neuromarker: Generalized Biomarker Ontology** 4 4 5 - ===**Workflow**===5 +Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration. 6 6 7 -1. ((( 8 -**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]** 7 +**Recommended Software** 9 9 10 -* Create a **GitHub repository** for AI scripts and models. 11 -* Use **GitHub Projects** to manage research milestones. 12 -))) 13 -1. ((( 14 -**We Use EBRAINS for Data & Collaboration** 9 +There is a suite of software that can help implement the workflow needed in Neurodiagnoses. Find a list of recommendations [[here>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/recommended_software]]. 15 15 16 -* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**. 17 -* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models. 18 -* Use **EBRAINS Wiki** for structured documentation and research discussion. 19 -))) 11 +**Core Biomarker Categories** 20 20 21 - ----13 +Within the Neurodiagnoses AI framework, biomarkers are categorized as follows: 22 22 23 -=== **1. Data Integration** === 15 +|=**Category**|=**Description** 16 +|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 17 +|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 18 +|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL, autoantiboides 19 +|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 20 +|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 21 +|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 22 +|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 23 +|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 24 24 25 - ====**DataSources**====25 +**Integrating External Databases into Neurodiagnoses** 26 26 27 - **BiomedicalOntologies& Databases:**27 +To enhance diagnostic precision, Neurodiagnoses AI incorporates data from multiple biomedical and neurological research databases. Researchers can integrate external datasets by following these steps: 28 28 29 - ***Human Phenotype Ontology(HPO)** for symptom annotation.30 -* *GeneOntology (GO)**formolecular andcellular processes.29 +1. ((( 30 +**Register for Access** 31 31 32 -**Dimensionality Reduction and Interpretability:** 32 +* Each external database requires individual registration and access approval. 33 +* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses. 34 +* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data. 35 +))) 36 +1. ((( 37 +**Download & Prepare Data** 33 33 34 -* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 35 -* **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 39 +* Download datasets while adhering to database usage policies. 40 +* ((( 41 +Ensure files meet Neurodiagnoses format requirements: 36 36 37 -**Neuroimaging & EEG/MEG Data:** 43 +|=**Data Type**|=**Accepted Formats** 44 +|**Tabular Data**|.csv, .tsv 45 +|**Neuroimaging**|.nii, .dcm 46 +|**Genomic Data**|.fasta, .vcf 47 +|**Clinical Metadata**|.json, .xml 48 +))) 49 +* ((( 50 +**Mandatory Fields for Integration**: 38 38 39 -* **MRI volumetric measures** for brain atrophy tracking. 40 -* **EEG functional connectivity patterns** (AI-Mind). 52 +* Subject ID: Unique patient identifier 53 +* Diagnosis: Standardized disease classification 54 +* Biomarkers: CSF, plasma, or imaging biomarkers 55 +* Genetic Data: Whole-genome or exome sequencing 56 +* Neuroimaging Metadata: MRI/PET acquisition parameters 57 +))) 58 +))) 59 +1. ((( 60 +**Upload Data to Neurodiagnoses** 41 41 42 -**Clinical & Biomarker Data:** 62 +* ((( 63 +**Option 1: Upload to EBRAINS Bucket** 43 43 44 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 45 -* **Sleep monitoring and actigraphy data** (ADIS). 65 +* Location: EBRAINS Neurodiagnoses Bucket 66 +* Ensure correct metadata tagging before submission. 67 +))) 68 +* ((( 69 +**Option 2: Contribute via GitHub Repository** 46 46 47 -**Federated Learning Integration:** 71 +* Location: GitHub Data Repository 72 +* Create a new folder under /data/ and include a dataset description. 73 +* For large datasets, contact project administrators before uploading. 74 +))) 75 +))) 76 +1. ((( 77 +**Integrate Data into AI Models** 48 48 49 -* **Secure multi-center data harmonization** (PROMINENT). 79 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 80 +* Standardize neuroimaging and biomarker formats using harmonization tools. 81 +* Utilize machine learning models to handle missing data and feature extraction. 82 +* Train AI models with newly integrated patient cohorts. 50 50 51 ----- 84 +**Reference**: See docs/data_processing.md for detailed instructions. 85 +))) 52 52 53 - ====**AnnotationSystem forMulti-Modal Data**====87 +**AI-Driven Biomarker Categorization** 54 54 55 - To ensure **structured integration of diverse datasets**, **Neurodiagnoses**will implementan**AI-drivenannotationsystem**, which will:89 +Neurodiagnoses employs advanced AI models for biomarker classification: 56 56 57 -* **Assign standardized metadata tags** to diagnostic features. 58 -* **Provide contextual explanations** for AI-based classifications. 59 -* **Track temporal disease progression annotations** to identify long-term trends. 91 +|=**Model Type**|=**Application** 92 +|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 93 +|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 94 +|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 60 60 61 - ----96 +=== **Jupyter Integration with EBRAINS** === 62 62 63 -=== ** 2. AI-Based Analysis** ===98 +=== **Overview** === 64 64 65 - ====**MachineLearning&DeepLearning Models**====100 +Neurodiagnoses Open Source leverages **Jupyter Notebooks from EBRAINS** to facilitate neurodiagnostic research, biomarker analysis, and AI-driven data processing. This integration provides an interactive and reproducible environment for developing machine learning models, analyzing neuroimaging data, and exploring multimodal biomarkers. Jupyter integration in EBRAINS empowers **Neurodiagnoses Open Source** to: ✅ **Analyze MRI, EEG, and biomarker data efficiently**. ✅ **Train machine learning models with high-performance computing**. ✅ **Ensure transparency with interactive explainability tools**. ✅ **Enable collaborative neurodiagnostic research with reproducible notebooks**. 66 66 67 -** Risk PredictionModels:**102 +=== **Key Capabilities of Jupyter in Neurodiagnoses** === 68 68 69 - ***LETHE’scognitiveisk predictionmodel**integratedinto theannotationframework.104 +==== **1. Neuroimaging Analysis (MRI, fMRI, PET)** ==== 70 70 71 -**Biomarker Classification & Probabilistic Imputation:** 106 +* **Preprocessing Pipelines:** 107 +** Use **Nipype, NiLearn, ANTs, and FreeSurfer** for structural and functional MRI analysis. 108 +** Skull stripping, segmentation, and registration of MRI scans. 109 +** Entropy-based slice selection for training deep learning models. 110 +* **Deep Learning for Neuroimaging:** 111 +** Implement **CNN-based models (ResNet, VGG16, Autoencoders)** for biomarker extraction. 112 +** Feature-based classification of **Alzheimer’s, Parkinson’s, and MCI** from neuroimaging data. 72 72 73 - ***KNNImputer**and**Bayesianmodels** used for handlingmissingbiomarker data**.114 +==== **2. EEG and MEG Signal Processing** ==== 74 74 75 -**Neuroimaging Feature Extraction:** 116 +* **Data Preprocessing & Artifact Removal:** 117 +** Use **MNE-Python** for filtering, ICA-based artifact rejection, and time-series normalization. 118 +** Extract frequency and time-domain features from EEG/MEG signals. 119 +* **Feature Engineering & Connectivity Analysis:** 120 +** Functional connectivity analysis using **coherence and phase synchronization metrics**. 121 +** Graph-theory-based EEG biomarkers for neurodegenerative disease classification. 122 +* **Deep Learning for EEG Analysis:** 123 +** Train LSTMs and CNNs for automatic EEG-based classification of MCI and cognitive decline. 76 76 77 - ***MRI& EEG data** annotatedwith **neuroanatomicalfeaturelabels**.125 +==== **3. Machine Learning for Biomarker Discovery** ==== 78 78 79 -==== **AI-Powered Annotation System** ==== 127 +* **SHAP-based Explainability for Biomarkers:** 128 +** Use **Random Forest + SHAP** to rank the most predictive CSF, blood, and imaging biomarkers. 129 +** Generate SHAP summary plots to interpret the impact of individual biomarkers. 130 +* **Multi-Modal Feature Selection:** 131 +** Implement **Anchor-Graph Feature Selection** to combine MRI, EEG, and CSF data. 132 +** PCA and autoencoders for dimensionality reduction and feature extraction. 133 +* **Automated Risk Prediction Models:** 134 +** Train ensemble models combining **deep learning and classical ML algorithms**. 135 +** Apply **subject-level cross-validation** to prevent data leakage and ensure reproducibility. 80 80 81 -* Uses **SHAP-based interpretability tools** to explain model decisions. 82 -* Generates **automated clinical annotations** in structured reports. 83 -* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). 137 +==== **4. Computational Simulations & Virtual Brain Models** ==== 84 84 85 ----- 139 +* **Integration with The Virtual Brain (TVB):** 140 +** Simulate large-scale brain networks based on individual neuroimaging data. 141 +** Model the effect of neurodegenerative progression on brain activity. 142 +* **Cortical and Subcortical Connectivity Analysis:** 143 +** Generate connectivity matrices using diffusion MRI and functional MRI correlations. 144 +** Validate computational simulations with real patient data from EBRAINS datasets. 86 86 87 -=== ** 3.Diagnostic Framework&ClinicalDecisionSupport** ===146 +==== **5. Interactive Data Visualization & Reporting** ==== 88 88 89 -==== **Tridimensional Diagnostic Axes** ==== 148 +* **Dynamic Plots & Dashboards:** 149 +** Use **Matplotlib, Seaborn, Plotly** for interactive visualizations of biomarkers. 150 +** Implement real-time MRI slice rendering and EEG signal visualization. 151 +* **Automated Report Generation:** 152 +** Generate **Jupyter-based PDF reports** summarizing key findings. 153 +** Export analysis results in JSON, CSV, and interactive web dashboards. 90 90 91 -** Axis 1: Etiology(PathogenicMechanisms)**155 +=== **How to Use Neurodiagnoses with Jupyter in EBRAINS** === 92 92 93 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 94 -* **AI-assisted annotation** provides **causal interpretations** for clinical use. 157 +==== **1. Access EBRAINS Jupyter Environment** ==== 95 95 96 -**Axis 2: Molecular Markers & Biomarkers** 159 +1. Create an **EBRAINS account** at [[EBRAINS.eu>>url:https://ebrains.eu/]]. 160 +1. Navigate to the **Collaboratory** and open the Jupyter Lab interface. 161 +1. Clone the Neurodiagnoses repository: 97 97 98 -* **Integration of CSF, blood, and neuroimaging biomarkers**. 99 -* **Structured annotation** highlights **biological pathways linked to diagnosis**. 163 +{{{git clone https://github.com/neurodiagnoses 164 +cd neurodiagnoses 165 +pip install -r requirements.txt 166 +}}} 100 100 101 -** Axis3:NeuroanatomoclinicalCorrelations**168 +==== **2. Run Prebuilt Neurodiagnoses Notebooks** ==== 102 102 103 -* **MRI and EEG data** provide anatomical and functional insights. 104 -* **AI-generated progression maps** annotate **brain structure-function relationships**. 170 +1. Open the **notebooks/** directory inside Jupyter. 171 +1. Run any of the available notebooks: 172 +1*. mri_biomarker_analysis.ipynb → Extracts MRI-based biomarkers. 173 +1*. eeg_preprocessing.ipynb → Cleans and processes EEG signals. 174 +1*. shap_biomarker_explainability.ipynb → Visualizes biomarker importance. 175 +1*. disease_risk_prediction.ipynb → Runs ML models for disease classification. 105 105 106 - ----177 +==== **3. Train Custom AI Models on EBRAINS HPC Resources** ==== 107 107 108 - ===**4.ComputationalWorkflow&AnnotationPipelines** ===179 +* Use EBRAINS **GPU and HPC clusters** for deep learning training: 109 109 110 -==== **Data Processing Steps** ==== 181 +{{{from neurodiagnoses.models import train_cnn_model 182 +train_cnn_model(data_path='data/mri/', model_type='ResNet50') 183 +}}} 184 +* Save trained models for deployment: 111 111 112 -**Data Ingestion:** 186 +{{{model.save('models/neurodiagnoses_cnn.h5') 187 +}}} 113 113 114 -* **Harmonized datasets** stored in **EBRAINS Bucket**. 115 -* **Preprocessing pipelines** clean and standardize data. 189 +For further developments, contribute to the **[[Neurodiagnoses GitHub Repository>>url:https://github.com/neurodiagnoses]]**. 116 116 117 -** Feature Engineering:**191 +**Collaboration & Partnerships** 118 118 119 - * **AI models**extract**clinicallyrelevantpatterns**from**EEG, MRI, andbiomarkers**.193 +Neurodiagnoses actively seeks partnerships with data providers to: 120 120 121 -**AI-Generated Annotations:** 195 +* Enable API-based data integration for real-time processing. 196 +* Co-develop harmonized AI-ready datasets with standardized annotations. 197 +* Secure funding opportunities through joint grant applications. 122 122 123 -* **Automated tagging** of diagnostic features in **structured reports**. 124 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 199 +**Interested in Partnering?** 125 125 126 - **ClinicalDecisionSupportIntegration:**201 +If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 127 127 128 -* **AI-annotated findings** fed into **interactive dashboards**. 129 -* **Clinicians can adjust, validate, and modify annotations**. 203 +**Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 130 130 131 - ----205 +**Final Notes** 132 132 133 - ===**5.Validation&Real-WorldTesting**===207 +Neurodiagnoses AI is committed to advancing the integration of artificial intelligence in neurodiagnostic processes. By continuously expanding our data ecosystem and incorporating standardized biomarker classifications through the Neuromarker ontology, we aim to enhance cross-disease AI training and improve diagnostic accuracy across neurodegenerative disorders. 134 134 135 - ====**ProspectiveClinicalStudy**====209 +We encourage researchers and institutions to contribute new datasets and methodologies to further enrich this collaborative platform. Your participation is vital in driving innovation and fostering a deeper understanding of complex neurological conditions. 136 136 137 -* **Multi-center validation** of AI-based **annotations & risk stratifications**. 138 -* **Benchmarking against clinician-based diagnoses**. 139 -* **Real-world testing** of AI-powered **structured reporting**. 211 +**For additional technical documentation and collaboration opportunities:** 140 140 141 -==== **Quality Assurance & Explainability** ==== 213 +* **GitHub Repository:** [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]] 214 +* **EBRAINS Collaboration Page:** [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]] 142 142 143 -* **Annotations linked to structured knowledge graphs** for improved transparency. 144 -* **Interactive annotation editor** allows clinicians to validate AI outputs. 145 - 146 ----- 147 - 148 -=== **6. Collaborative Development** === 149 - 150 -The project is **open to contributions** from **researchers, clinicians, and developers**. 151 - 152 -**Key tools include:** 153 - 154 -* **Jupyter Notebooks**: For data analysis and pipeline development. 155 -** Example: **probabilistic imputation** 156 -* **Wiki Pages**: For documenting methods and results. 157 -* **Drive and Bucket**: For sharing code, data, and outputs. 158 -* **Collaboration with related projects**: 159 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 160 - 161 ----- 162 - 163 -=== **7. Tools and Technologies** === 164 - 165 -==== **Programming Languages:** ==== 166 - 167 -* **Python** for AI and data processing. 168 - 169 -==== **Frameworks:** ==== 170 - 171 -* **TensorFlow** and **PyTorch** for machine learning. 172 -* **Flask** or **FastAPI** for backend services. 173 - 174 -==== **Visualization:** ==== 175 - 176 -* **Plotly** and **Matplotlib** for interactive and static visualizations. 177 - 178 -==== **EBRAINS Services:** ==== 179 - 180 -* **Collaboratory Lab** for running Notebooks. 181 -* **Buckets** for storing large datasets. 182 - 183 ----- 184 - 185 -=== **Why This Matters** === 186 - 187 -* The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful. 188 -* It enables real-time tracking of disease progression across the three diagnostic axes. 189 -* It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows. 216 +If you encounter any issues during data integration or have suggestions for improvement, please open a GitHub Issue or consult the EBRAINS Neurodiagnoses Forum. Together, we can advance the field of neurodiagnostics and contribute to better patient outcomes.
- workflow neurodiagnoses.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.manuelmenendez - Size
-
... ... @@ -1,0 +1,1 @@ 1 +157.5 KB - Content