Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 12.2
edited by manuelmenendez
on 2025/02/09 09:54
Change comment: There is no comment for this version
To version 20.1
edited by manuelmenendez
on 2025/02/14 14:47
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,273 +1,146 @@
1 -==== **Overview** ====
1 +Here is the updated **Methodology** section for the EBRAINS Wiki, incorporating the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)** for **biomarker classification across all neurodegenerative diseases**.
2 2  
3 -This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**.
4 -
5 -=== **Workflow** ===
6 -
7 -1. (((
8 -**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]**
9 -
10 -* Create a **GitHub repository** for AI scripts and models.
11 -* Use **GitHub Projects** to manage research milestones.
12 -)))
13 -1. (((
14 -**We Use EBRAINS for Data & Collaboration**
15 -
16 -* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**.
17 -* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models.
18 -* Use **EBRAINS Wiki** for structured documentation and research discussion.
19 -)))
20 -
21 21  ----
22 22  
23 -=== **1. Data Integration** ===
5 +== **Neurodiagnoses AI: Multimodal AI for Neurodiagnostic Predictions** ==
24 24  
25 -== Overview ==
7 +=== **Project Overview** ===
26 26  
9 +Neurodiagnoses AI implements **AI-driven diagnostic and prognostic models** for central nervous system (CNS) disorders, expanding the **Florey Dementia Index (FDI) methodology** to a broader set of neurological conditions. The approach integrates **multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics) and employs machine learning models to provide **explainable, real-time diagnostic insights**. This framework now incorporates **Neuromarker**, a **generalized biomarker ontology** that categorizes biomarkers across neurodegenerative diseases, enabling **standardized, cross-disease AI training**.
27 27  
28 -Neurodiagnoses integrates clinical data via the **EBRAINS Medical Informatics Platform (MIP)**. MIP federates decentralized clinical data, allowing Neurodiagnoses to securely access and process sensitive information for AI-based diagnostics.
11 +== **Neuromarker: Generalized Biomarker Ontology** ==
29 29  
30 -== How It Works ==
13 +Neuromarker extends the **Common Alzheimer’s Disease Research Ontology (CADRO)** into a **cross-disease biomarker categorization framework** applicable to all neurodegenerative diseases (NDDs). It allows for **standardized classification, AI-based feature extraction, and multimodal integration**.
31 31  
15 +=== **Core Biomarker Categories** ===
32 32  
33 -1. (((
34 -**Authentication & API Access:**
17 +The following ontology is used within **Neurodiagnoses AI** for biomarker categorization:
35 35  
36 -* Users must have an **EBRAINS account**.
37 -* Neurodiagnoses uses **secure API endpoints** to fetch clinical data (e.g., from the **Federation for Dementia**).
38 -)))
39 -1. (((
40 -**Data Mapping & Harmonization:**
19 +|=**Category**|=**Description**
20 +|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic)
21 +|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein)
22 +|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL
23 +|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers
24 +|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers
25 +|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS)
26 +|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores
27 +|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities
41 41  
42 -* Retrieved data is **normalized** and converted to standard formats (.csv, .json).
43 -* Data from **multiple sources** is harmonized to ensure consistency for AI processing.
44 -)))
45 -1. (((
46 -**Security & Compliance:**
47 -
48 -* All data access is **logged and monitored**.
49 -* Data remains on **MIP servers** using **federated learning techniques** when possible.
50 -* Access is granted only after signing a **Data Usage Agreement (DUA)**.
51 -)))
52 -
53 -== Implementation Steps ==
54 -
55 -
56 -1. Clone the repository.
57 -1. Configure your **EBRAINS API credentials** in mip_integration.py.
58 -1. Run the script to **download and harmonize clinical data**.
59 -1. Process the data for **AI model training**.
60 -
61 -For more detailed instructions, please refer to the **[[MIP Documentation>>url:https://mip.ebrains.eu/]]**.
62 -
63 63  ----
64 64  
65 -= Data Processing & Integration with Clinica.Run =
31 +== **How to Use External Databases in Neurodiagnoses** ==
66 66  
33 +To enhance diagnostic accuracy, Neurodiagnoses AI integrates data from **multiple biomedical and neurological research databases**. Researchers can follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework.
67 67  
68 -== Overview ==
35 +=== **Potential Data Sources** ===
69 69  
37 +Neurodiagnoses maintains an **updated list** of biomedical datasets relevant to neurodegenerative diseases:
70 70  
71 -Neurodiagnoses now supports **Clinica.Run**, an open-source neuroimaging platform designed for **multimodal data processing and reproducible neuroscience workflows**.
39 +* **ADNI**: Alzheimer's Disease Imaging & Biomarkers → [[ADNI>>url:https://adni.loni.usc.edu/]]
40 +* **PPMI**: Parkinson’s Disease Imaging & Biospecimens → [[PPMI>>url:https://www.ppmi-info.org/]]
41 +* **GP2**: Whole-Genome Sequencing for PD → [[GP2>>url:https://gp2.org/]]
42 +* **Enroll-HD**: Huntington’s Disease Clinical & Genetic Data → [[Enroll-HD>>url:https://www.enroll-hd.org/]]
43 +* **GAAIN**: Multi-Source Alzheimer’s Data Aggregation → [[GAAIN>>url:https://gaain.org/]]
44 +* **UK Biobank**: Population-Wide Genetic, Imaging & Health Records → [[UK Biobank>>url:https://www.ukbiobank.ac.uk/]]
45 +* **DPUK**: Dementia & Aging Data → [[DPUK>>url:https://www.dementiasplatform.uk/]]
46 +* **PRION Registry**: Prion Diseases Clinical & Genetic Data → [[PRION Registry>>url:https://prionregistry.org/]]
47 +* **DECIPHER**: Rare Genetic Disorder Genomic Variants → [[DECIPHER>>url:https://decipher.sanger.ac.uk/]]
72 72  
73 -== How It Works ==
74 -
75 -
76 -1. (((
77 -**Neuroimaging Preprocessing:**
78 -
79 -* MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines**.
80 -* Supports **longitudinal and cross-sectional analyses**.
81 -)))
82 -1. (((
83 -**Automated Biomarker Extraction:**
84 -
85 -* Standardized extraction of **volumetric, metabolic, and functional biomarkers**.
86 -* Integration with machine learning models in Neurodiagnoses.
87 -)))
88 -1. (((
89 -**Data Security & Compliance:**
90 -
91 -* Clinica.Run operates in **compliance with GDPR and HIPAA**.
92 -* Neuroimaging data remains **within the original storage environment**.
93 -)))
94 -
95 -== Implementation Steps ==
96 -
97 -
98 -1. Install **Clinica.Run** dependencies.
99 -1. Configure your **Clinica.Run pipeline** in clinica_run_config.json.
100 -1. Run the pipeline for **preprocessing and biomarker extraction**.
101 -1. Use processed neuroimaging data for **AI-driven diagnostics** in Neurodiagnoses.
102 -
103 -For further information, refer to **[[Clinica.Run Documentation>>url:https://clinica.run/]]**.
104 -
105 -==== ====
106 -
107 -==== **Data Sources** ====
108 -
109 -[[List of potential sources of databases>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]]
110 -
111 -**Biomedical Ontologies & Databases:**
112 -
113 -* **Human Phenotype Ontology (HPO)** for symptom annotation.
114 -* **Gene Ontology (GO)** for molecular and cellular processes.
115 -
116 -**Dimensionality Reduction and Interpretability:**
117 -
118 -* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**.
119 -* **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts.
120 -
121 -**Neuroimaging & EEG/MEG Data:**
122 -
123 -* **MRI volumetric measures** for brain atrophy tracking.
124 -* **EEG functional connectivity patterns** (AI-Mind).
125 -
126 -**Clinical & Biomarker Data:**
127 -
128 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light).
129 -* **Sleep monitoring and actigraphy data** (ADIS).
130 -
131 -**Federated Learning Integration:**
132 -
133 -* **Secure multi-center data harmonization** (PROMINENT).
134 -
135 135  ----
136 136  
137 -==== **Annotation System for Multi-Modal Data** ====
51 +== **1. Register for Access** ==
138 138  
139 -To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will:
53 +* Each external database requires **individual registration and access approval**.
54 +* Ensure compliance with **ethical approvals and data usage agreements** before integrating datasets into Neurodiagnoses.
55 +* Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data.
140 140  
141 -* **Assign standardized metadata tags** to diagnostic features.
142 -* **Provide contextual explanations** for AI-based classifications.
143 -* **Track temporal disease progression annotations** to identify long-term trends.
144 -
145 145  ----
146 146  
147 -=== **2. AI-Based Analysis** ===
59 +== **2. Download & Prepare Data** ==
148 148  
149 -==== **Machine Learning & Deep Learning Models** ====
61 +* Download datasets while adhering to **database usage policies**.
62 +* Ensure files meet **Neurodiagnoses format requirements**:
150 150  
151 -**Risk Prediction Models:**
64 +|=**Data Type**|=**Accepted Formats**
65 +|**Tabular Data**|.csv, .tsv
66 +|**Neuroimaging**|.nii, .dcm
67 +|**Genomic Data**|.fasta, .vcf
68 +|**Clinical Metadata**|.json, .xml
152 152  
153 -* **LETHE’s cognitive risk prediction model** integrated into the annotation framework.
70 +* **Mandatory Fields for Integration**:
71 +** **Subject ID**: Unique patient identifier
72 +** **Diagnosis**: Standardized disease classification
73 +** **Biomarkers**: CSF, plasma, or imaging biomarkers
74 +** **Genetic Data**: Whole-genome or exome sequencing
75 +** **Neuroimaging Metadata**: MRI/PET acquisition parameters
154 154  
155 -**Biomarker Classification & Probabilistic Imputation:**
77 +----
156 156  
157 -* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**.
79 +== **3. Upload Data to Neurodiagnoses** ==
158 158  
159 -**Neuroimaging Feature Extraction:**
81 +=== **Option 1: Upload to EBRAINS Bucket** ===
160 160  
161 -* **MRI & EEG data** annotated with **neuroanatomical feature labels**.
83 +* Location: **EBRAINS Neurodiagnoses Bucket**
84 +* Ensure **correct metadata tagging** before submission.
162 162  
163 -==== **AI-Powered Annotation System** ====
86 +=== **Option 2: Contribute via GitHub Repository** ===
164 164  
165 -* Uses **SHAP-based interpretability tools** to explain model decisions.
166 -* Generates **automated clinical annotations** in structured reports.
167 -* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**).
88 +* Location: **GitHub Data Repository**
89 +* Create a **new folder under /data/** and include a **dataset description**.
90 +* **For large datasets**, contact project administrators before uploading.
168 168  
169 169  ----
170 170  
171 -=== **3. Diagnostic Framework & Clinical Decision Support** ===
94 +== **4. Integrate Data into AI Models** ==
172 172  
173 -==== **Tridimensional Diagnostic Axes** ====
96 +* Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**.
97 +* **Standardize neuroimaging and biomarker formats** using harmonization tools.
98 +* Use **machine learning models** to handle **missing data** and **feature extraction**.
99 +* Train AI models with **newly integrated patient cohorts**.
174 174  
175 -**Axis 1: Etiology (Pathogenic Mechanisms)**
101 +**Reference**: See docs/data_processing.md for detailed instructions.
176 176  
177 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**.
178 -* **AI-assisted annotation** provides **causal interpretations** for clinical use.
179 -
180 -**Axis 2: Molecular Markers & Biomarkers**
181 -
182 -* **Integration of CSF, blood, and neuroimaging biomarkers**.
183 -* **Structured annotation** highlights **biological pathways linked to diagnosis**.
184 -
185 -**Axis 3: Neuroanatomoclinical Correlations**
186 -
187 -* **MRI and EEG data** provide anatomical and functional insights.
188 -* **AI-generated progression maps** annotate **brain structure-function relationships**.
189 -
190 190  ----
191 191  
192 -=== **4. Computational Workflow & Annotation Pipelines** ===
105 +== **AI-Driven Biomarker Categorization** ==
193 193  
194 -==== **Data Processing Steps** ====
107 +Neurodiagnoses employs **AI models** for biomarker classification:
195 195  
196 -**Data Ingestion:**
109 +|=**Model Type**|=**Application**
110 +|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases
111 +|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers
112 +|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data
197 197  
198 -* **Harmonized datasets** stored in **EBRAINS Bucket**.
199 -* **Preprocessing pipelines** clean and standardize data.
200 -
201 -**Feature Engineering:**
202 -
203 -* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**.
204 -
205 -**AI-Generated Annotations:**
206 -
207 -* **Automated tagging** of diagnostic features in **structured reports**.
208 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions.
209 -
210 -**Clinical Decision Support Integration:**
211 -
212 -* **AI-annotated findings** fed into **interactive dashboards**.
213 -* **Clinicians can adjust, validate, and modify annotations**.
214 -
215 215  ----
216 216  
217 -=== **5. Validation & Real-World Testing** ===
116 +== **Collaboration & Partnerships** ==
218 218  
219 -==== **Prospective Clinical Study** ====
118 +=== **Partnering with Data Providers** ===
220 220  
221 -* **Multi-center validation** of AI-based **annotations & risk stratifications**.
222 -* **Benchmarking against clinician-based diagnoses**.
223 -* **Real-world testing** of AI-powered **structured reporting**.
120 +Neurodiagnoses seeks partnerships with data repositories to:
224 224  
225 -==== **Quality Assurance & Explainability** ====
122 +* Enable **API-based data integration** for real-time processing.
123 +* Co-develop **harmonized AI-ready datasets** with standardized annotations.
124 +* Secure **funding opportunities** through joint grant applications.
226 226  
227 -* **Annotations linked to structured knowledge graphs** for improved transparency.
228 -* **Interactive annotation editor** allows clinicians to validate AI outputs.
126 +**Interested in Partnering?**
229 229  
230 -----
128 +* If you represent a **research consortium or database provider**, reach out to explore **data-sharing agreements**.
129 +* **Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]
231 231  
232 -=== **6. Collaborative Development** ===
233 -
234 -The project is **open to contributions** from **researchers, clinicians, and developers**.
235 -
236 -**Key tools include:**
237 -
238 -* **Jupyter Notebooks**: For data analysis and pipeline development.
239 -** Example: **probabilistic imputation**
240 -* **Wiki Pages**: For documenting methods and results.
241 -* **Drive and Bucket**: For sharing code, data, and outputs.
242 -* **Collaboration with related projects**:
243 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment**
244 -
245 245  ----
246 246  
247 -=== **7. Tools and Technologies** ===
133 +== **Final Notes** ==
248 248  
249 -==== **Programming Languages:** ====
135 +Neurodiagnoses continuously expands its **data ecosystem** to support **AI-driven clinical decision-making**. Researchers and institutions are encouraged to **contribute new datasets and methodologies**.
250 250  
251 -* **Python** for AI and data processing.
137 +**For additional technical documentation**:
252 252  
253 -==== **Frameworks:** ====
139 +* **GitHub Repository**: [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]]
140 +* **EBRAINS Collaboration Page**: [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]]
254 254  
255 -* **TensorFlow** and **PyTorch** for machine learning.
256 -* **Flask** or **FastAPI** for backend services.
142 +**If you experience issues integrating data**, open a **GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**.
257 257  
258 -==== **Visualization:** ====
259 -
260 -* **Plotly** and **Matplotlib** for interactive and static visualizations.
261 -
262 -==== **EBRAINS Services:** ====
263 -
264 -* **Collaboratory Lab** for running Notebooks.
265 -* **Buckets** for storing large datasets.
266 -
267 267  ----
268 268  
269 -=== **Why This Matters** ===
270 -
271 -* The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.
272 -* It enables real-time tracking of disease progression across the three diagnostic axes.
273 -* It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.
146 +This **updated methodology** now incorporates [[https:~~/~~/github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/biomarker_ontology>>https://Neuromarker]] for standardized biomarker classification, enabling **cross-disease AI training** across neurodegenerative disorders.