Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 12.2
edited by manuelmenendez
on 2025/02/09 09:54
on 2025/02/09 09:54
Change comment:
There is no comment for this version
To version 20.1
edited by manuelmenendez
on 2025/02/14 14:47
on 2025/02/14 14:47
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,273 +1,146 @@ 1 - ====**Overview**====1 +Here is the updated **Methodology** section for the EBRAINS Wiki, incorporating the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)** for **biomarker classification across all neurodegenerative diseases**. 2 2 3 -This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**. 4 - 5 -=== **Workflow** === 6 - 7 -1. ((( 8 -**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]** 9 - 10 -* Create a **GitHub repository** for AI scripts and models. 11 -* Use **GitHub Projects** to manage research milestones. 12 -))) 13 -1. ((( 14 -**We Use EBRAINS for Data & Collaboration** 15 - 16 -* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**. 17 -* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models. 18 -* Use **EBRAINS Wiki** for structured documentation and research discussion. 19 -))) 20 - 21 21 ---- 22 22 23 -== =**1. Data Integration** ===5 +== **Neurodiagnoses AI: Multimodal AI for Neurodiagnostic Predictions** == 24 24 25 -== Overview == 7 +=== **Project Overview** === 26 26 9 +Neurodiagnoses AI implements **AI-driven diagnostic and prognostic models** for central nervous system (CNS) disorders, expanding the **Florey Dementia Index (FDI) methodology** to a broader set of neurological conditions. The approach integrates **multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics) and employs machine learning models to provide **explainable, real-time diagnostic insights**. This framework now incorporates **Neuromarker**, a **generalized biomarker ontology** that categorizes biomarkers across neurodegenerative diseases, enabling **standardized, cross-disease AI training**. 27 27 28 - Neurodiagnosesintegrates clinical data via the**EBRAINS Medical Informatics Platform (MIP)**. MIP federatesdecentralizedclinical data, allowing Neurodiagnoses to securely access and processsensitive information for AI-based diagnostics.11 +== **Neuromarker: Generalized Biomarker Ontology** == 29 29 30 - ==How ItWorks==13 +Neuromarker extends the **Common Alzheimer’s Disease Research Ontology (CADRO)** into a **cross-disease biomarker categorization framework** applicable to all neurodegenerative diseases (NDDs). It allows for **standardized classification, AI-based feature extraction, and multimodal integration**. 31 31 15 +=== **Core Biomarker Categories** === 32 32 33 -1. ((( 34 -**Authentication & API Access:** 17 +The following ontology is used within **Neurodiagnoses AI** for biomarker categorization: 35 35 36 -* Users must have an **EBRAINS account**. 37 -* Neurodiagnoses uses **secure API endpoints** to fetch clinical data (e.g., from the **Federation for Dementia**). 38 -))) 39 -1. ((( 40 -**Data Mapping & Harmonization:** 19 +|=**Category**|=**Description** 20 +|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 21 +|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 22 +|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL 23 +|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 24 +|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 25 +|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 26 +|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 27 +|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 41 41 42 -* Retrieved data is **normalized** and converted to standard formats (.csv, .json). 43 -* Data from **multiple sources** is harmonized to ensure consistency for AI processing. 44 -))) 45 -1. ((( 46 -**Security & Compliance:** 47 - 48 -* All data access is **logged and monitored**. 49 -* Data remains on **MIP servers** using **federated learning techniques** when possible. 50 -* Access is granted only after signing a **Data Usage Agreement (DUA)**. 51 -))) 52 - 53 -== Implementation Steps == 54 - 55 - 56 -1. Clone the repository. 57 -1. Configure your **EBRAINS API credentials** in mip_integration.py. 58 -1. Run the script to **download and harmonize clinical data**. 59 -1. Process the data for **AI model training**. 60 - 61 -For more detailed instructions, please refer to the **[[MIP Documentation>>url:https://mip.ebrains.eu/]]**. 62 - 63 63 ---- 64 64 65 -= DataProcessing& IntegrationwithClinica.Run =31 +== **How to Use External Databases in Neurodiagnoses** == 66 66 33 +To enhance diagnostic accuracy, Neurodiagnoses AI integrates data from **multiple biomedical and neurological research databases**. Researchers can follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework. 67 67 68 -== Overview==35 +=== **Potential Data Sources** === 69 69 37 +Neurodiagnoses maintains an **updated list** of biomedical datasets relevant to neurodegenerative diseases: 70 70 71 -Neurodiagnoses now supports **Clinica.Run**, an open-source neuroimaging platform designed for **multimodal data processing and reproducible neuroscience workflows**. 39 +* **ADNI**: Alzheimer's Disease Imaging & Biomarkers → [[ADNI>>url:https://adni.loni.usc.edu/]] 40 +* **PPMI**: Parkinson’s Disease Imaging & Biospecimens → [[PPMI>>url:https://www.ppmi-info.org/]] 41 +* **GP2**: Whole-Genome Sequencing for PD → [[GP2>>url:https://gp2.org/]] 42 +* **Enroll-HD**: Huntington’s Disease Clinical & Genetic Data → [[Enroll-HD>>url:https://www.enroll-hd.org/]] 43 +* **GAAIN**: Multi-Source Alzheimer’s Data Aggregation → [[GAAIN>>url:https://gaain.org/]] 44 +* **UK Biobank**: Population-Wide Genetic, Imaging & Health Records → [[UK Biobank>>url:https://www.ukbiobank.ac.uk/]] 45 +* **DPUK**: Dementia & Aging Data → [[DPUK>>url:https://www.dementiasplatform.uk/]] 46 +* **PRION Registry**: Prion Diseases Clinical & Genetic Data → [[PRION Registry>>url:https://prionregistry.org/]] 47 +* **DECIPHER**: Rare Genetic Disorder Genomic Variants → [[DECIPHER>>url:https://decipher.sanger.ac.uk/]] 72 72 73 -== How It Works == 74 - 75 - 76 -1. ((( 77 -**Neuroimaging Preprocessing:** 78 - 79 -* MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines**. 80 -* Supports **longitudinal and cross-sectional analyses**. 81 -))) 82 -1. ((( 83 -**Automated Biomarker Extraction:** 84 - 85 -* Standardized extraction of **volumetric, metabolic, and functional biomarkers**. 86 -* Integration with machine learning models in Neurodiagnoses. 87 -))) 88 -1. ((( 89 -**Data Security & Compliance:** 90 - 91 -* Clinica.Run operates in **compliance with GDPR and HIPAA**. 92 -* Neuroimaging data remains **within the original storage environment**. 93 -))) 94 - 95 -== Implementation Steps == 96 - 97 - 98 -1. Install **Clinica.Run** dependencies. 99 -1. Configure your **Clinica.Run pipeline** in clinica_run_config.json. 100 -1. Run the pipeline for **preprocessing and biomarker extraction**. 101 -1. Use processed neuroimaging data for **AI-driven diagnostics** in Neurodiagnoses. 102 - 103 -For further information, refer to **[[Clinica.Run Documentation>>url:https://clinica.run/]]**. 104 - 105 -==== ==== 106 - 107 -==== **Data Sources** ==== 108 - 109 -[[List of potential sources of databases>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 110 - 111 -**Biomedical Ontologies & Databases:** 112 - 113 -* **Human Phenotype Ontology (HPO)** for symptom annotation. 114 -* **Gene Ontology (GO)** for molecular and cellular processes. 115 - 116 -**Dimensionality Reduction and Interpretability:** 117 - 118 -* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 119 -* **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 120 - 121 -**Neuroimaging & EEG/MEG Data:** 122 - 123 -* **MRI volumetric measures** for brain atrophy tracking. 124 -* **EEG functional connectivity patterns** (AI-Mind). 125 - 126 -**Clinical & Biomarker Data:** 127 - 128 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 129 -* **Sleep monitoring and actigraphy data** (ADIS). 130 - 131 -**Federated Learning Integration:** 132 - 133 -* **Secure multi-center data harmonization** (PROMINENT). 134 - 135 135 ---- 136 136 137 -== ==**AnnotationSystemforMulti-Modal Data** ====51 +== **1. Register for Access** == 138 138 139 -To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will: 53 +* Each external database requires **individual registration and access approval**. 54 +* Ensure compliance with **ethical approvals and data usage agreements** before integrating datasets into Neurodiagnoses. 55 +* Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data. 140 140 141 -* **Assign standardized metadata tags** to diagnostic features. 142 -* **Provide contextual explanations** for AI-based classifications. 143 -* **Track temporal disease progression annotations** to identify long-term trends. 144 - 145 145 ---- 146 146 147 -== =**2.AI-BasedAnalysis** ===59 +== **2. Download & Prepare Data** == 148 148 149 -==== **Machine Learning & Deep Learning Models** ==== 61 +* Download datasets while adhering to **database usage policies**. 62 +* Ensure files meet **Neurodiagnoses format requirements**: 150 150 151 -**Risk Prediction Models:** 64 +|=**Data Type**|=**Accepted Formats** 65 +|**Tabular Data**|.csv, .tsv 66 +|**Neuroimaging**|.nii, .dcm 67 +|**Genomic Data**|.fasta, .vcf 68 +|**Clinical Metadata**|.json, .xml 152 152 153 -* **LETHE’s cognitive risk prediction model** integrated into the annotation framework. 70 +* **Mandatory Fields for Integration**: 71 +** **Subject ID**: Unique patient identifier 72 +** **Diagnosis**: Standardized disease classification 73 +** **Biomarkers**: CSF, plasma, or imaging biomarkers 74 +** **Genetic Data**: Whole-genome or exome sequencing 75 +** **Neuroimaging Metadata**: MRI/PET acquisition parameters 154 154 155 - **Biomarker Classification & Probabilistic Imputation:**77 +---- 156 156 157 - ***KNNImputer**and**Bayesianmodels**used forhandling**missing biomarker data**.79 +== **3. Upload Data to Neurodiagnoses** == 158 158 159 -** NeuroimagingFeatureExtraction:**81 +=== **Option 1: Upload to EBRAINS Bucket** === 160 160 161 -* **MRI & EEG data** annotated with **neuroanatomical feature labels**. 83 +* Location: **EBRAINS Neurodiagnoses Bucket** 84 +* Ensure **correct metadata tagging** before submission. 162 162 163 -=== =**AI-Powered AnnotationSystem** ====86 +=== **Option 2: Contribute via GitHub Repository** === 164 164 165 -* Uses**SHAP-basedinterpretabilitytools** toexplain model decisions.166 -* Generates**automatedclinicalannotations**instructuredreports.167 -* Linksfindingsto**standardizedmedical ontologies**(e.g., **SNOMED, HPO**).88 +* Location: **GitHub Data Repository** 89 +* Create a **new folder under /data/** and include a **dataset description**. 90 +* **For large datasets**, contact project administrators before uploading. 168 168 169 169 ---- 170 170 171 -== =**3.Diagnostic Framework& ClinicalDecisionSupport** ===94 +== **4. Integrate Data into AI Models** == 172 172 173 -==== **Tridimensional Diagnostic Axes** ==== 96 +* Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**. 97 +* **Standardize neuroimaging and biomarker formats** using harmonization tools. 98 +* Use **machine learning models** to handle **missing data** and **feature extraction**. 99 +* Train AI models with **newly integrated patient cohorts**. 174 174 175 -** Axis 1:Etiology(PathogenicMechanisms)**101 +**Reference**: See docs/data_processing.md for detailed instructions. 176 176 177 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 178 -* **AI-assisted annotation** provides **causal interpretations** for clinical use. 179 - 180 -**Axis 2: Molecular Markers & Biomarkers** 181 - 182 -* **Integration of CSF, blood, and neuroimaging biomarkers**. 183 -* **Structured annotation** highlights **biological pathways linked to diagnosis**. 184 - 185 -**Axis 3: Neuroanatomoclinical Correlations** 186 - 187 -* **MRI and EEG data** provide anatomical and functional insights. 188 -* **AI-generated progression maps** annotate **brain structure-function relationships**. 189 - 190 190 ---- 191 191 192 -== =**4. ComputationalWorkflow& AnnotationPipelines** ===105 +== **AI-Driven Biomarker Categorization** == 193 193 194 - ==== **Data ProcessingSteps**====107 +Neurodiagnoses employs **AI models** for biomarker classification: 195 195 196 -**Data Ingestion:** 109 +|=**Model Type**|=**Application** 110 +|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 111 +|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 112 +|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 197 197 198 -* **Harmonized datasets** stored in **EBRAINS Bucket**. 199 -* **Preprocessing pipelines** clean and standardize data. 200 - 201 -**Feature Engineering:** 202 - 203 -* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. 204 - 205 -**AI-Generated Annotations:** 206 - 207 -* **Automated tagging** of diagnostic features in **structured reports**. 208 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 209 - 210 -**Clinical Decision Support Integration:** 211 - 212 -* **AI-annotated findings** fed into **interactive dashboards**. 213 -* **Clinicians can adjust, validate, and modify annotations**. 214 - 215 215 ---- 216 216 217 -== =**5. Validation &Real-World Testing** ===116 +== **Collaboration & Partnerships** == 218 218 219 -=== =**ProspectiveClinicalStudy** ====118 +=== **Partnering with Data Providers** === 220 220 221 -* **Multi-center validation** of AI-based **annotations & risk stratifications**. 222 -* **Benchmarking against clinician-based diagnoses**. 223 -* **Real-world testing** of AI-powered **structured reporting**. 120 +Neurodiagnoses seeks partnerships with data repositories to: 224 224 225 -==== **Quality Assurance & Explainability** ==== 122 +* Enable **API-based data integration** for real-time processing. 123 +* Co-develop **harmonized AI-ready datasets** with standardized annotations. 124 +* Secure **funding opportunities** through joint grant applications. 226 226 227 -* **Annotations linked to structured knowledge graphs** for improved transparency. 228 -* **Interactive annotation editor** allows clinicians to validate AI outputs. 126 +**Interested in Partnering?** 229 229 230 ----- 128 +* If you represent a **research consortium or database provider**, reach out to explore **data-sharing agreements**. 129 +* **Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 231 231 232 -=== **6. Collaborative Development** === 233 - 234 -The project is **open to contributions** from **researchers, clinicians, and developers**. 235 - 236 -**Key tools include:** 237 - 238 -* **Jupyter Notebooks**: For data analysis and pipeline development. 239 -** Example: **probabilistic imputation** 240 -* **Wiki Pages**: For documenting methods and results. 241 -* **Drive and Bucket**: For sharing code, data, and outputs. 242 -* **Collaboration with related projects**: 243 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 244 - 245 245 ---- 246 246 247 -== =**7. Toolsand Technologies** ===133 +== **Final Notes** == 248 248 249 - ====**ProgrammingLanguages:**====135 +Neurodiagnoses continuously expands its **data ecosystem** to support **AI-driven clinical decision-making**. Researchers and institutions are encouraged to **contribute new datasets and methodologies**. 250 250 251 -* *Python** forAIandprocessing.137 +**For additional technical documentation**: 252 252 253 -==== **Frameworks:** ==== 139 +* **GitHub Repository**: [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]] 140 +* **EBRAINS Collaboration Page**: [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]] 254 254 255 -* **TensorFlow** and **PyTorch** for machine learning. 256 -* **Flask** or **FastAPI** for backend services. 142 +**If you experience issues integrating data**, open a **GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**. 257 257 258 -==== **Visualization:** ==== 259 - 260 -* **Plotly** and **Matplotlib** for interactive and static visualizations. 261 - 262 -==== **EBRAINS Services:** ==== 263 - 264 -* **Collaboratory Lab** for running Notebooks. 265 -* **Buckets** for storing large datasets. 266 - 267 267 ---- 268 268 269 -=== **Why This Matters** === 270 - 271 -* The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful. 272 -* It enables real-time tracking of disease progression across the three diagnostic axes. 273 -* It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows. 146 +This **updated methodology** now incorporates [[https:~~/~~/github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/biomarker_ontology>>https://Neuromarker]] for standardized biomarker classification, enabling **cross-disease AI training** across neurodegenerative disorders.