Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 12.2
edited by manuelmenendez
on 2025/02/09 09:54
on 2025/02/09 09:54
Change comment:
There is no comment for this version
To version 23.1
edited by manuelmenendez
on 2025/02/15 12:55
on 2025/02/15 12:55
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,273 +1,106 @@ 1 - ====**Overview**====1 +**Neurodiagnoses AI** is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. Building upon the Florey Dementia Index (FDI) methodology, it now encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)**, which standardizes biomarker classification across all neurodegenerative diseases, facilitating cross-disease AI training. 2 2 3 - This project develops a**tridimensional diagnostic framework** for **CNS diseases**, incorporating**AI-powered annotation tools** to improve**interpretability, standardization, and clinical utility**. Themethodologyintegrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarkerdatasets**, and applies **machine learning models** toenerate**structured, explainable diagnostic outputs**.3 +**Neuromarker: Generalized Biomarker Ontology** 4 4 5 - ===**Workflow**===5 +Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration. 6 6 7 -1. ((( 8 -**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]** 7 +**Core Biomarker Categories** 9 9 10 -* Create a **GitHub repository** for AI scripts and models. 11 -* Use **GitHub Projects** to manage research milestones. 12 -))) 13 -1. ((( 14 -**We Use EBRAINS for Data & Collaboration** 9 +Within the Neurodiagnoses AI framework, biomarkers are categorized as follows: 15 15 16 -* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**. 17 -* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models. 18 -* Use **EBRAINS Wiki** for structured documentation and research discussion. 19 -))) 11 +|=**Category**|=**Description** 12 +|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 13 +|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 14 +|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL, autoantiboides 15 +|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 16 +|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 17 +|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 18 +|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 19 +|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 20 20 21 - ----21 +**Integrating External Databases into Neurodiagnoses** 22 22 23 - ===**1.Data Integration**===23 +To enhance diagnostic precision, Neurodiagnoses AI incorporates data from multiple biomedical and neurological research databases. Researchers can integrate external datasets by following these steps: 24 24 25 -== Overview == 26 - 27 - 28 -Neurodiagnoses integrates clinical data via the **EBRAINS Medical Informatics Platform (MIP)**. MIP federates decentralized clinical data, allowing Neurodiagnoses to securely access and process sensitive information for AI-based diagnostics. 29 - 30 -== How It Works == 31 - 32 - 33 33 1. ((( 34 -** Authentication&API Access:**26 +**Register for Access** 35 35 36 -* Users must have an **EBRAINS account**. 37 -* Neurodiagnoses uses **secure API endpoints** to fetch clinical data (e.g., from the **Federation for Dementia**). 28 +* Each external database requires individual registration and access approval. 29 +* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses. 30 +* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data. 38 38 ))) 39 39 1. ((( 40 -**Da taMapping&Harmonization:**33 +**Download & Prepare Data** 41 41 42 -* Retrieved data is **normalized** and converted to standard formats (.csv, .json). 43 -* Data from **multiple sources** is harmonized to ensure consistency for AI processing. 44 -))) 45 -1. ((( 46 -**Security & Compliance:** 35 +* Download datasets while adhering to database usage policies. 36 +* ((( 37 +Ensure files meet Neurodiagnoses format requirements: 47 47 48 -* All data access is **logged and monitored**. 49 -* Data remains on **MIP servers** using **federated learning techniques** when possible. 50 -* Access is granted only after signing a **Data Usage Agreement (DUA)**. 39 +|=**Data Type**|=**Accepted Formats** 40 +|**Tabular Data**|.csv, .tsv 41 +|**Neuroimaging**|.nii, .dcm 42 +|**Genomic Data**|.fasta, .vcf 43 +|**Clinical Metadata**|.json, .xml 51 51 ))) 45 +* ((( 46 +**Mandatory Fields for Integration**: 52 52 53 -== Implementation Steps == 54 - 55 - 56 -1. Clone the repository. 57 -1. Configure your **EBRAINS API credentials** in mip_integration.py. 58 -1. Run the script to **download and harmonize clinical data**. 59 -1. Process the data for **AI model training**. 60 - 61 -For more detailed instructions, please refer to the **[[MIP Documentation>>url:https://mip.ebrains.eu/]]**. 62 - 63 ----- 64 - 65 -= Data Processing & Integration with Clinica.Run = 66 - 67 - 68 -== Overview == 69 - 70 - 71 -Neurodiagnoses now supports **Clinica.Run**, an open-source neuroimaging platform designed for **multimodal data processing and reproducible neuroscience workflows**. 72 - 73 -== How It Works == 74 - 75 - 48 +* Subject ID: Unique patient identifier 49 +* Diagnosis: Standardized disease classification 50 +* Biomarkers: CSF, plasma, or imaging biomarkers 51 +* Genetic Data: Whole-genome or exome sequencing 52 +* Neuroimaging Metadata: MRI/PET acquisition parameters 53 +))) 54 +))) 76 76 1. ((( 77 -**Neuroi maging Preprocessing:**56 +**Upload Data to Neurodiagnoses** 78 78 79 -* MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines**. 80 -* Supports **longitudinal and cross-sectional analyses**. 58 +* ((( 59 +**Option 1: Upload to EBRAINS Bucket** 60 + 61 +* Location: EBRAINS Neurodiagnoses Bucket 62 +* Ensure correct metadata tagging before submission. 81 81 ))) 82 - 1.(((83 -** AutomatedBiomarkerExtraction:**64 +* ((( 65 +**Option 2: Contribute via GitHub Repository** 84 84 85 -* Standardized extraction of **volumetric, metabolic, and functional biomarkers**. 86 -* Integration with machine learning models in Neurodiagnoses. 67 +* Location: GitHub Data Repository 68 +* Create a new folder under /data/ and include a dataset description. 69 +* For large datasets, contact project administrators before uploading. 87 87 ))) 71 +))) 88 88 1. ((( 89 -**Data Security&Compliance:**73 +**Integrate Data into AI Models** 90 90 91 -* Clinica.Run operates in **compliance with GDPR and HIPAA**. 92 -* Neuroimaging data remains **within the original storage environment**. 75 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 76 +* Standardize neuroimaging and biomarker formats using harmonization tools. 77 +* Utilize machine learning models to handle missing data and feature extraction. 78 +* Train AI models with newly integrated patient cohorts. 79 + 80 +**Reference**: See docs/data_processing.md for detailed instructions. 93 93 ))) 94 94 95 - ==ImplementationSteps ==83 +**AI-Driven Biomarker Categorization** 96 96 85 +Neurodiagnoses employs advanced AI models for biomarker classification: 97 97 98 - 1. Install**Clinica.Run**dependencies.99 - 1.ConfigureyourClinica.Runpipeline** in clinica_run_config.json.100 - 1. Runhepipelinefor**preprocessingandbiomarkerextraction**.101 - 1.Useprocessedneuroimagingdata for **AI-drivendiagnostics**inNeurodiagnoses.87 +|=**Model Type**|=**Application** 88 +|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 89 +|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 90 +|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 102 102 103 - For further information,referto **[[Clinica.Run Documentation>>url:https://clinica.run/]]**.92 +**Collaboration & Partnerships** 104 104 105 - ========94 +Neurodiagnoses actively seeks partnerships with data providers to: 106 106 107 -==== **Data Sources** ==== 96 +* Enable API-based data integration for real-time processing. 97 +* Co-develop harmonized AI-ready datasets with standardized annotations. 98 +* Secure funding opportunities through joint grant applications. 108 108 109 - [[List of potential sourcesof databases>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]]100 +**Interested in Partnering?** 110 110 111 - **BiomedicalOntologies&Databases:**102 +If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 112 112 113 -* **Human Phenotype Ontology (HPO)** for symptom annotation. 114 -* **Gene Ontology (GO)** for molecular and cellular processes. 104 +**Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 115 115 116 -**Dimensionality Reduction and Interpretability:** 117 - 118 -* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 119 -* **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 120 - 121 -**Neuroimaging & EEG/MEG Data:** 122 - 123 -* **MRI volumetric measures** for brain atrophy tracking. 124 -* **EEG functional connectivity patterns** (AI-Mind). 125 - 126 -**Clinical & Biomarker Data:** 127 - 128 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 129 -* **Sleep monitoring and actigraphy data** (ADIS). 130 - 131 -**Federated Learning Integration:** 132 - 133 -* **Secure multi-center data harmonization** (PROMINENT). 134 - 135 ----- 136 - 137 -==== **Annotation System for Multi-Modal Data** ==== 138 - 139 -To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will: 140 - 141 -* **Assign standardized metadata tags** to diagnostic features. 142 -* **Provide contextual explanations** for AI-based classifications. 143 -* **Track temporal disease progression annotations** to identify long-term trends. 144 - 145 ----- 146 - 147 -=== **2. AI-Based Analysis** === 148 - 149 -==== **Machine Learning & Deep Learning Models** ==== 150 - 151 -**Risk Prediction Models:** 152 - 153 -* **LETHE’s cognitive risk prediction model** integrated into the annotation framework. 154 - 155 -**Biomarker Classification & Probabilistic Imputation:** 156 - 157 -* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. 158 - 159 -**Neuroimaging Feature Extraction:** 160 - 161 -* **MRI & EEG data** annotated with **neuroanatomical feature labels**. 162 - 163 -==== **AI-Powered Annotation System** ==== 164 - 165 -* Uses **SHAP-based interpretability tools** to explain model decisions. 166 -* Generates **automated clinical annotations** in structured reports. 167 -* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). 168 - 169 ----- 170 - 171 -=== **3. Diagnostic Framework & Clinical Decision Support** === 172 - 173 -==== **Tridimensional Diagnostic Axes** ==== 174 - 175 -**Axis 1: Etiology (Pathogenic Mechanisms)** 176 - 177 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 178 -* **AI-assisted annotation** provides **causal interpretations** for clinical use. 179 - 180 -**Axis 2: Molecular Markers & Biomarkers** 181 - 182 -* **Integration of CSF, blood, and neuroimaging biomarkers**. 183 -* **Structured annotation** highlights **biological pathways linked to diagnosis**. 184 - 185 -**Axis 3: Neuroanatomoclinical Correlations** 186 - 187 -* **MRI and EEG data** provide anatomical and functional insights. 188 -* **AI-generated progression maps** annotate **brain structure-function relationships**. 189 - 190 ----- 191 - 192 -=== **4. Computational Workflow & Annotation Pipelines** === 193 - 194 -==== **Data Processing Steps** ==== 195 - 196 -**Data Ingestion:** 197 - 198 -* **Harmonized datasets** stored in **EBRAINS Bucket**. 199 -* **Preprocessing pipelines** clean and standardize data. 200 - 201 -**Feature Engineering:** 202 - 203 -* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. 204 - 205 -**AI-Generated Annotations:** 206 - 207 -* **Automated tagging** of diagnostic features in **structured reports**. 208 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 209 - 210 -**Clinical Decision Support Integration:** 211 - 212 -* **AI-annotated findings** fed into **interactive dashboards**. 213 -* **Clinicians can adjust, validate, and modify annotations**. 214 - 215 ----- 216 - 217 -=== **5. Validation & Real-World Testing** === 218 - 219 -==== **Prospective Clinical Study** ==== 220 - 221 -* **Multi-center validation** of AI-based **annotations & risk stratifications**. 222 -* **Benchmarking against clinician-based diagnoses**. 223 -* **Real-world testing** of AI-powered **structured reporting**. 224 - 225 -==== **Quality Assurance & Explainability** ==== 226 - 227 -* **Annotations linked to structured knowledge graphs** for improved transparency. 228 -* **Interactive annotation editor** allows clinicians to validate AI outputs. 229 - 230 ----- 231 - 232 -=== **6. Collaborative Development** === 233 - 234 -The project is **open to contributions** from **researchers, clinicians, and developers**. 235 - 236 -**Key tools include:** 237 - 238 -* **Jupyter Notebooks**: For data analysis and pipeline development. 239 -** Example: **probabilistic imputation** 240 -* **Wiki Pages**: For documenting methods and results. 241 -* **Drive and Bucket**: For sharing code, data, and outputs. 242 -* **Collaboration with related projects**: 243 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 244 - 245 ----- 246 - 247 -=== **7. Tools and Technologies** === 248 - 249 -==== **Programming Languages:** ==== 250 - 251 -* **Python** for AI and data processing. 252 - 253 -==== **Frameworks:** ==== 254 - 255 -* **TensorFlow** and **PyTorch** for machine learning. 256 -* **Flask** or **FastAPI** for backend services. 257 - 258 -==== **Visualization:** ==== 259 - 260 -* **Plotly** and **Matplotlib** for interactive and static visualizations. 261 - 262 -==== **EBRAINS Services:** ==== 263 - 264 -* **Collaboratory Lab** for running Notebooks. 265 -* **Buckets** for storing large datasets. 266 - 267 ----- 268 - 269 -=== **Why This Matters** === 270 - 271 -* The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful. 272 -* It enables real-time tracking of disease progression across the three diagnostic axes. 273 -* It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows. 106 +
- workflow neurodiagnoses.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.manuelmenendez - Size
-
... ... @@ -1,0 +1,1 @@ 1 +157.5 KB - Content