Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 12.2
edited by manuelmenendez
on 2025/02/09 09:54
on 2025/02/09 09:54
Change comment:
There is no comment for this version
To version 5.1
edited by manuelmenendez
on 2025/01/29 19:11
on 2025/01/29 19:11
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,273 +1,109 @@ 1 -=== =**Overview** ====1 +=== **Overview** === 2 2 3 -This project developsa**tridimensionaldiagnosticframework**for**CNSdiseases**,incorporating **AI-powered annotationtools**toimprove**interpretability,standardization,andclinicalutility**. The methodology integrates**multi-modaldata**,including**genetic,neuroimaging,neurophysiological, andbiomarker datasets**, andapplies**machinelearning models**togenerate**structured, explainable diagnosticoutputs**.3 +This section describes the step-by-step process used in the **Neurodiagnoses** project to develop a novel diagnostic framework for neurological diseases. The methodology integrates artificial intelligence (AI), biomedical ontologies, and computational neuroscience to create a structured, interpretable, and scalable diagnostic system. 4 4 5 -=== **Workflow** === 6 - 7 -1. ((( 8 -**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]** 9 - 10 -* Create a **GitHub repository** for AI scripts and models. 11 -* Use **GitHub Projects** to manage research milestones. 12 -))) 13 -1. ((( 14 -**We Use EBRAINS for Data & Collaboration** 15 - 16 -* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**. 17 -* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models. 18 -* Use **EBRAINS Wiki** for structured documentation and research discussion. 19 -))) 20 - 21 21 ---- 22 22 23 23 === **1. Data Integration** === 24 24 25 -== Overview == 26 - 27 - 28 -Neurodiagnoses integrates clinical data via the **EBRAINS Medical Informatics Platform (MIP)**. MIP federates decentralized clinical data, allowing Neurodiagnoses to securely access and process sensitive information for AI-based diagnostics. 29 - 30 -== How It Works == 31 - 32 - 33 -1. ((( 34 -**Authentication & API Access:** 35 - 36 -* Users must have an **EBRAINS account**. 37 -* Neurodiagnoses uses **secure API endpoints** to fetch clinical data (e.g., from the **Federation for Dementia**). 38 -))) 39 -1. ((( 40 -**Data Mapping & Harmonization:** 41 - 42 -* Retrieved data is **normalized** and converted to standard formats (.csv, .json). 43 -* Data from **multiple sources** is harmonized to ensure consistency for AI processing. 44 -))) 45 -1. ((( 46 -**Security & Compliance:** 47 - 48 -* All data access is **logged and monitored**. 49 -* Data remains on **MIP servers** using **federated learning techniques** when possible. 50 -* Access is granted only after signing a **Data Usage Agreement (DUA)**. 51 -))) 52 - 53 -== Implementation Steps == 54 - 55 - 56 -1. Clone the repository. 57 -1. Configure your **EBRAINS API credentials** in mip_integration.py. 58 -1. Run the script to **download and harmonize clinical data**. 59 -1. Process the data for **AI model training**. 60 - 61 -For more detailed instructions, please refer to the **[[MIP Documentation>>url:https://mip.ebrains.eu/]]**. 62 - 63 ----- 64 - 65 -= Data Processing & Integration with Clinica.Run = 66 - 67 - 68 -== Overview == 69 - 70 - 71 -Neurodiagnoses now supports **Clinica.Run**, an open-source neuroimaging platform designed for **multimodal data processing and reproducible neuroscience workflows**. 72 - 73 -== How It Works == 74 - 75 - 76 -1. ((( 77 -**Neuroimaging Preprocessing:** 78 - 79 -* MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines**. 80 -* Supports **longitudinal and cross-sectional analyses**. 81 -))) 82 -1. ((( 83 -**Automated Biomarker Extraction:** 84 - 85 -* Standardized extraction of **volumetric, metabolic, and functional biomarkers**. 86 -* Integration with machine learning models in Neurodiagnoses. 87 -))) 88 -1. ((( 89 -**Data Security & Compliance:** 90 - 91 -* Clinica.Run operates in **compliance with GDPR and HIPAA**. 92 -* Neuroimaging data remains **within the original storage environment**. 93 -))) 94 - 95 -== Implementation Steps == 96 - 97 - 98 -1. Install **Clinica.Run** dependencies. 99 -1. Configure your **Clinica.Run pipeline** in clinica_run_config.json. 100 -1. Run the pipeline for **preprocessing and biomarker extraction**. 101 -1. Use processed neuroimaging data for **AI-driven diagnostics** in Neurodiagnoses. 102 - 103 -For further information, refer to **[[Clinica.Run Documentation>>url:https://clinica.run/]]**. 104 - 105 -==== ==== 106 - 107 107 ==== **Data Sources** ==== 108 108 109 -[[List of potential sources of databases>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 11 +* **Biomedical Ontologies**: 12 +** Human Phenotype Ontology (HPO) for phenotypic abnormalities. 13 +** Gene Ontology (GO) for molecular and cellular processes. 14 +* **Neuroimaging Datasets**: 15 +** Example: Alzheimer’s Disease Neuroimaging Initiative (ADNI), OpenNeuro. 16 +* **Clinical and Biomarker Data**: 17 +** Anonymized clinical reports, molecular biomarkers, and test results. 110 110 111 -**Biomedical Ontologies & Databases:** 112 112 113 -* **Human Phenotype Ontology (HPO)** for symptom annotation. 114 -* **Gene Ontology (GO)** for molecular and cellular processes. 20 +==== **Data Preprocessing** ==== 115 115 116 -**Dimensionality Reduction and Interpretability:** 22 +1. **Standardization**: Ensure all data sources are normalized to a common format. 23 +1. **Feature Selection**: Identify relevant features for diagnosis (e.g., biomarkers, imaging scores). 24 +1. **Data Cleaning**: Handle missing values and remove duplicates. 117 117 118 -* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 119 -* **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 120 - 121 -**Neuroimaging & EEG/MEG Data:** 122 - 123 -* **MRI volumetric measures** for brain atrophy tracking. 124 -* **EEG functional connectivity patterns** (AI-Mind). 125 - 126 -**Clinical & Biomarker Data:** 127 - 128 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 129 -* **Sleep monitoring and actigraphy data** (ADIS). 130 - 131 -**Federated Learning Integration:** 132 - 133 -* **Secure multi-center data harmonization** (PROMINENT). 134 - 135 135 ---- 136 136 137 -==== **Annotation System for Multi-Modal Data** ==== 138 - 139 -To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will: 140 - 141 -* **Assign standardized metadata tags** to diagnostic features. 142 -* **Provide contextual explanations** for AI-based classifications. 143 -* **Track temporal disease progression annotations** to identify long-term trends. 144 - 145 ----- 146 - 147 147 === **2. AI-Based Analysis** === 148 148 149 -==== **M achineLearning &DeepLearning Models** ====30 +==== **Model Development** ==== 150 150 151 -**Risk Prediction Models:** 32 +* **Embedding Models**: Use pre-trained models like BioBERT or BioLORD for text data. 33 +* **Classification Models**: 34 +** Algorithms: Random Forest, Support Vector Machines (SVM), or neural networks. 35 +** Purpose: Predict the likelihood of specific neurological conditions based on input data. 152 152 153 - ***LETHE’scognitiverisk predictionmodel**integrated into theannotationframework.37 +==== **Dimensionality Reduction and Interpretability** ==== 154 154 155 -**Biomarker Classification & Probabilistic Imputation:** 39 +* Leverage [[DEIBO>>https://drive.ebrains.eu/f/8d7157708cde4b258db0/]] (Data-driven Embedding Interpretation Based on Ontologies) to connect model dimensions to ontology concepts. 40 +* Evaluate interpretability using metrics like the Area Under the Interpretability Curve (AUIC). 156 156 157 -* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. 158 - 159 -**Neuroimaging Feature Extraction:** 160 - 161 -* **MRI & EEG data** annotated with **neuroanatomical feature labels**. 162 - 163 -==== **AI-Powered Annotation System** ==== 164 - 165 -* Uses **SHAP-based interpretability tools** to explain model decisions. 166 -* Generates **automated clinical annotations** in structured reports. 167 -* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). 168 - 169 169 ---- 170 170 171 -=== **3. Diagnostic Framework & Clinical Decision Support** ===44 +=== **3. Diagnostic Framework** === 172 172 173 -==== ** TridimensionalDiagnostic Axes** ====46 +==== **Axes of Diagnosis** ==== 174 174 175 - **Axis1:Etiology(PathogenicMechanisms)**48 +The framework organizes diagnostic data into three axes: 176 176 177 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 178 -* **AI-assisted annotation** provides **causal interpretations** for clinical use. 50 +1. **Etiology**: Genetic and environmental risk factors. 51 +1. **Molecular Markers**: Biomarkers such as amyloid-beta, tau, and alpha-synuclein. 52 +1. **Neuroanatomical Correlations**: Results from neuroimaging (e.g., MRI, PET). 179 179 180 -** Axis 2: Molecular Markers & Biomarkers**54 +==== **Recommendation System** ==== 181 181 182 -* **Integrationof CSF, blood,and neuroimagingbiomarkers**.183 -* **Structured annotation** highlights**biological pathwayslinkedtodiagnosis**.56 +* Suggests additional tests or biomarkers if gaps are detected in the data. 57 +* Prioritizes tests based on clinical impact and cost-effectiveness. 184 184 185 -**Axis 3: Neuroanatomoclinical Correlations** 186 - 187 -* **MRI and EEG data** provide anatomical and functional insights. 188 -* **AI-generated progression maps** annotate **brain structure-function relationships**. 189 - 190 190 ---- 191 191 192 -=== **4. Computational Workflow & Annotation Pipelines** ===61 +=== **4. Computational Workflow** === 193 193 194 -==== **Data Processing Steps** ==== 63 +1. **Data Loading**: Import data from storage (Drive or Bucket). 64 +1. **Feature Engineering**: Generate derived features from the raw data. 65 +1. **Model Training**: 66 +1*. Split data into training, validation, and test sets. 67 +1*. Train models with cross-validation to ensure robustness. 68 +1. **Evaluation**: 69 +1*. Metrics: Accuracy, F1-Score, AUIC for interpretability. 70 +1*. Compare against baseline models and domain benchmarks. 195 195 196 -**Data Ingestion:** 197 - 198 -* **Harmonized datasets** stored in **EBRAINS Bucket**. 199 -* **Preprocessing pipelines** clean and standardize data. 200 - 201 -**Feature Engineering:** 202 - 203 -* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. 204 - 205 -**AI-Generated Annotations:** 206 - 207 -* **Automated tagging** of diagnostic features in **structured reports**. 208 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 209 - 210 -**Clinical Decision Support Integration:** 211 - 212 -* **AI-annotated findings** fed into **interactive dashboards**. 213 -* **Clinicians can adjust, validate, and modify annotations**. 214 - 215 215 ---- 216 216 217 -=== **5. Validation & Real-World Testing** ===74 +=== **5. Validation** === 218 218 219 -==== ** ProspectiveClinicalStudy** ====76 +==== **Internal Validation** ==== 220 220 221 -* **Multi-center validation** of AI-based **annotations & risk stratifications**. 222 -* **Benchmarking against clinician-based diagnoses**. 223 -* **Real-world testing** of AI-powered **structured reporting**. 78 +* Test the system using simulated datasets and known clinical cases. 79 +* Fine-tune models based on validation results. 224 224 225 -==== ** Quality Assurance & Explainability** ====81 +==== **External Validation** ==== 226 226 227 -* **Annotationslinked to structuredknowledgegraphs** forimprovedtransparency.228 -* **Interactive annotationeditor**allowsclinicianstovalidateAI outputs.83 +* Collaborate with research institutions and hospitals to test the system in real-world settings. 84 +* Use anonymized patient data to ensure privacy compliance. 229 229 230 230 ---- 231 231 232 232 === **6. Collaborative Development** === 233 233 234 -The project is **open to contributions**from**researchers, clinicians, and developers**.90 +The project is open to contributions from researchers, clinicians, and developers. Key tools include: 235 235 236 -**Key tools include:** 237 - 238 238 * **Jupyter Notebooks**: For data analysis and pipeline development. 239 -** Example: **probabilistic imputation**93 +** Example: [[probabilistic imputation>>https://drive.ebrains.eu/f/4f69ab52f7734ef48217/]] 240 240 * **Wiki Pages**: For documenting methods and results. 241 241 * **Drive and Bucket**: For sharing code, data, and outputs. 242 -* **Collaboration with related projects**: 243 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 96 +* **Collaboration with related projects: **For instance: [[//Beyond the hype: AI in dementia – from early risk detection to disease treatment//>>https://www.lethe-project.eu/beyond-the-hype-ai-in-dementia-from-early-risk-detection-to-disease-treatment/]] 244 244 245 245 ---- 246 246 247 247 === **7. Tools and Technologies** === 248 248 249 -==== **Programming Languages:** ==== 250 - 251 -* **Python** for AI and data processing. 252 - 253 -==== **Frameworks:** ==== 254 - 255 -* **TensorFlow** and **PyTorch** for machine learning. 256 -* **Flask** or **FastAPI** for backend services. 257 - 258 -==== **Visualization:** ==== 259 - 260 -* **Plotly** and **Matplotlib** for interactive and static visualizations. 261 - 262 -==== **EBRAINS Services:** ==== 263 - 264 -* **Collaboratory Lab** for running Notebooks. 265 -* **Buckets** for storing large datasets. 266 - 267 ----- 268 - 269 -=== **Why This Matters** === 270 - 271 -* The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful. 272 -* It enables real-time tracking of disease progression across the three diagnostic axes. 273 -* It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows. 102 +* **Programming Languages**: Python for AI and data processing. 103 +* **Frameworks**: 104 +** TensorFlow and PyTorch for machine learning. 105 +** Flask or FastAPI for backend services. 106 +* **Visualization**: Plotly and Matplotlib for interactive and static visualizations. 107 +* **EBRAINS Services**: 108 +** Collaboratory Lab for running Notebooks. 109 +** Buckets for storing large datasets.