Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 12.2
edited by manuelmenendez
on 2025/02/09 09:54
Change comment: There is no comment for this version
To version 5.1
edited by manuelmenendez
on 2025/01/29 19:11
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,273 +1,109 @@
1 -==== **Overview** ====
1 +=== **Overview** ===
2 2  
3 -This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**.
3 +This section describes the step-by-step process used in the **Neurodiagnoses** project to develop a novel diagnostic framework for neurological diseases. The methodology integrates artificial intelligence (AI), biomedical ontologies, and computational neuroscience to create a structured, interpretable, and scalable diagnostic system.
4 4  
5 -=== **Workflow** ===
6 -
7 -1. (((
8 -**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]**
9 -
10 -* Create a **GitHub repository** for AI scripts and models.
11 -* Use **GitHub Projects** to manage research milestones.
12 -)))
13 -1. (((
14 -**We Use EBRAINS for Data & Collaboration**
15 -
16 -* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**.
17 -* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models.
18 -* Use **EBRAINS Wiki** for structured documentation and research discussion.
19 -)))
20 -
21 21  ----
22 22  
23 23  === **1. Data Integration** ===
24 24  
25 -== Overview ==
26 -
27 -
28 -Neurodiagnoses integrates clinical data via the **EBRAINS Medical Informatics Platform (MIP)**. MIP federates decentralized clinical data, allowing Neurodiagnoses to securely access and process sensitive information for AI-based diagnostics.
29 -
30 -== How It Works ==
31 -
32 -
33 -1. (((
34 -**Authentication & API Access:**
35 -
36 -* Users must have an **EBRAINS account**.
37 -* Neurodiagnoses uses **secure API endpoints** to fetch clinical data (e.g., from the **Federation for Dementia**).
38 -)))
39 -1. (((
40 -**Data Mapping & Harmonization:**
41 -
42 -* Retrieved data is **normalized** and converted to standard formats (.csv, .json).
43 -* Data from **multiple sources** is harmonized to ensure consistency for AI processing.
44 -)))
45 -1. (((
46 -**Security & Compliance:**
47 -
48 -* All data access is **logged and monitored**.
49 -* Data remains on **MIP servers** using **federated learning techniques** when possible.
50 -* Access is granted only after signing a **Data Usage Agreement (DUA)**.
51 -)))
52 -
53 -== Implementation Steps ==
54 -
55 -
56 -1. Clone the repository.
57 -1. Configure your **EBRAINS API credentials** in mip_integration.py.
58 -1. Run the script to **download and harmonize clinical data**.
59 -1. Process the data for **AI model training**.
60 -
61 -For more detailed instructions, please refer to the **[[MIP Documentation>>url:https://mip.ebrains.eu/]]**.
62 -
63 -----
64 -
65 -= Data Processing & Integration with Clinica.Run =
66 -
67 -
68 -== Overview ==
69 -
70 -
71 -Neurodiagnoses now supports **Clinica.Run**, an open-source neuroimaging platform designed for **multimodal data processing and reproducible neuroscience workflows**.
72 -
73 -== How It Works ==
74 -
75 -
76 -1. (((
77 -**Neuroimaging Preprocessing:**
78 -
79 -* MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines**.
80 -* Supports **longitudinal and cross-sectional analyses**.
81 -)))
82 -1. (((
83 -**Automated Biomarker Extraction:**
84 -
85 -* Standardized extraction of **volumetric, metabolic, and functional biomarkers**.
86 -* Integration with machine learning models in Neurodiagnoses.
87 -)))
88 -1. (((
89 -**Data Security & Compliance:**
90 -
91 -* Clinica.Run operates in **compliance with GDPR and HIPAA**.
92 -* Neuroimaging data remains **within the original storage environment**.
93 -)))
94 -
95 -== Implementation Steps ==
96 -
97 -
98 -1. Install **Clinica.Run** dependencies.
99 -1. Configure your **Clinica.Run pipeline** in clinica_run_config.json.
100 -1. Run the pipeline for **preprocessing and biomarker extraction**.
101 -1. Use processed neuroimaging data for **AI-driven diagnostics** in Neurodiagnoses.
102 -
103 -For further information, refer to **[[Clinica.Run Documentation>>url:https://clinica.run/]]**.
104 -
105 -==== ====
106 -
107 107  ==== **Data Sources** ====
108 108  
109 -[[List of potential sources of databases>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]]
11 +* **Biomedical Ontologies**:
12 +** Human Phenotype Ontology (HPO) for phenotypic abnormalities.
13 +** Gene Ontology (GO) for molecular and cellular processes.
14 +* **Neuroimaging Datasets**:
15 +** Example: Alzheimer’s Disease Neuroimaging Initiative (ADNI), OpenNeuro.
16 +* **Clinical and Biomarker Data**:
17 +** Anonymized clinical reports, molecular biomarkers, and test results.
110 110  
111 -**Biomedical Ontologies & Databases:**
112 112  
113 -* **Human Phenotype Ontology (HPO)** for symptom annotation.
114 -* **Gene Ontology (GO)** for molecular and cellular processes.
20 +==== **Data Preprocessing** ====
115 115  
116 -**Dimensionality Reduction and Interpretability:**
22 +1. **Standardization**: Ensure all data sources are normalized to a common format.
23 +1. **Feature Selection**: Identify relevant features for diagnosis (e.g., biomarkers, imaging scores).
24 +1. **Data Cleaning**: Handle missing values and remove duplicates.
117 117  
118 -* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**.
119 -* **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts.
120 -
121 -**Neuroimaging & EEG/MEG Data:**
122 -
123 -* **MRI volumetric measures** for brain atrophy tracking.
124 -* **EEG functional connectivity patterns** (AI-Mind).
125 -
126 -**Clinical & Biomarker Data:**
127 -
128 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light).
129 -* **Sleep monitoring and actigraphy data** (ADIS).
130 -
131 -**Federated Learning Integration:**
132 -
133 -* **Secure multi-center data harmonization** (PROMINENT).
134 -
135 135  ----
136 136  
137 -==== **Annotation System for Multi-Modal Data** ====
138 -
139 -To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will:
140 -
141 -* **Assign standardized metadata tags** to diagnostic features.
142 -* **Provide contextual explanations** for AI-based classifications.
143 -* **Track temporal disease progression annotations** to identify long-term trends.
144 -
145 -----
146 -
147 147  === **2. AI-Based Analysis** ===
148 148  
149 -==== **Machine Learning & Deep Learning Models** ====
30 +==== **Model Development** ====
150 150  
151 -**Risk Prediction Models:**
32 +* **Embedding Models**: Use pre-trained models like BioBERT or BioLORD for text data.
33 +* **Classification Models**:
34 +** Algorithms: Random Forest, Support Vector Machines (SVM), or neural networks.
35 +** Purpose: Predict the likelihood of specific neurological conditions based on input data.
152 152  
153 -* **LETHE’s cognitive risk prediction model** integrated into the annotation framework.
37 +==== **Dimensionality Reduction and Interpretability** ====
154 154  
155 -**Biomarker Classification & Probabilistic Imputation:**
39 +* Leverage [[DEIBO>>https://drive.ebrains.eu/f/8d7157708cde4b258db0/]] (Data-driven Embedding Interpretation Based on Ontologies) to connect model dimensions to ontology concepts.
40 +* Evaluate interpretability using metrics like the Area Under the Interpretability Curve (AUIC).
156 156  
157 -* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**.
158 -
159 -**Neuroimaging Feature Extraction:**
160 -
161 -* **MRI & EEG data** annotated with **neuroanatomical feature labels**.
162 -
163 -==== **AI-Powered Annotation System** ====
164 -
165 -* Uses **SHAP-based interpretability tools** to explain model decisions.
166 -* Generates **automated clinical annotations** in structured reports.
167 -* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**).
168 -
169 169  ----
170 170  
171 -=== **3. Diagnostic Framework & Clinical Decision Support** ===
44 +=== **3. Diagnostic Framework** ===
172 172  
173 -==== **Tridimensional Diagnostic Axes** ====
46 +==== **Axes of Diagnosis** ====
174 174  
175 -**Axis 1: Etiology (Pathogenic Mechanisms)**
48 +The framework organizes diagnostic data into three axes:
176 176  
177 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**.
178 -* **AI-assisted annotation** provides **causal interpretations** for clinical use.
50 +1. **Etiology**: Genetic and environmental risk factors.
51 +1. **Molecular Markers**: Biomarkers such as amyloid-beta, tau, and alpha-synuclein.
52 +1. **Neuroanatomical Correlations**: Results from neuroimaging (e.g., MRI, PET).
179 179  
180 -**Axis 2: Molecular Markers & Biomarkers**
54 +==== **Recommendation System** ====
181 181  
182 -* **Integration of CSF, blood, and neuroimaging biomarkers**.
183 -* **Structured annotation** highlights **biological pathways linked to diagnosis**.
56 +* Suggests additional tests or biomarkers if gaps are detected in the data.
57 +* Prioritizes tests based on clinical impact and cost-effectiveness.
184 184  
185 -**Axis 3: Neuroanatomoclinical Correlations**
186 -
187 -* **MRI and EEG data** provide anatomical and functional insights.
188 -* **AI-generated progression maps** annotate **brain structure-function relationships**.
189 -
190 190  ----
191 191  
192 -=== **4. Computational Workflow & Annotation Pipelines** ===
61 +=== **4. Computational Workflow** ===
193 193  
194 -==== **Data Processing Steps** ====
63 +1. **Data Loading**: Import data from storage (Drive or Bucket).
64 +1. **Feature Engineering**: Generate derived features from the raw data.
65 +1. **Model Training**:
66 +1*. Split data into training, validation, and test sets.
67 +1*. Train models with cross-validation to ensure robustness.
68 +1. **Evaluation**:
69 +1*. Metrics: Accuracy, F1-Score, AUIC for interpretability.
70 +1*. Compare against baseline models and domain benchmarks.
195 195  
196 -**Data Ingestion:**
197 -
198 -* **Harmonized datasets** stored in **EBRAINS Bucket**.
199 -* **Preprocessing pipelines** clean and standardize data.
200 -
201 -**Feature Engineering:**
202 -
203 -* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**.
204 -
205 -**AI-Generated Annotations:**
206 -
207 -* **Automated tagging** of diagnostic features in **structured reports**.
208 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions.
209 -
210 -**Clinical Decision Support Integration:**
211 -
212 -* **AI-annotated findings** fed into **interactive dashboards**.
213 -* **Clinicians can adjust, validate, and modify annotations**.
214 -
215 215  ----
216 216  
217 -=== **5. Validation & Real-World Testing** ===
74 +=== **5. Validation** ===
218 218  
219 -==== **Prospective Clinical Study** ====
76 +==== **Internal Validation** ====
220 220  
221 -* **Multi-center validation** of AI-based **annotations & risk stratifications**.
222 -* **Benchmarking against clinician-based diagnoses**.
223 -* **Real-world testing** of AI-powered **structured reporting**.
78 +* Test the system using simulated datasets and known clinical cases.
79 +* Fine-tune models based on validation results.
224 224  
225 -==== **Quality Assurance & Explainability** ====
81 +==== **External Validation** ====
226 226  
227 -* **Annotations linked to structured knowledge graphs** for improved transparency.
228 -* **Interactive annotation editor** allows clinicians to validate AI outputs.
83 +* Collaborate with research institutions and hospitals to test the system in real-world settings.
84 +* Use anonymized patient data to ensure privacy compliance.
229 229  
230 230  ----
231 231  
232 232  === **6. Collaborative Development** ===
233 233  
234 -The project is **open to contributions** from **researchers, clinicians, and developers**.
90 +The project is open to contributions from researchers, clinicians, and developers. Key tools include:
235 235  
236 -**Key tools include:**
237 -
238 238  * **Jupyter Notebooks**: For data analysis and pipeline development.
239 -** Example: **probabilistic imputation**
93 +** Example: [[probabilistic imputation>>https://drive.ebrains.eu/f/4f69ab52f7734ef48217/]]
240 240  * **Wiki Pages**: For documenting methods and results.
241 241  * **Drive and Bucket**: For sharing code, data, and outputs.
242 -* **Collaboration with related projects**:
243 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment**
96 +* **Collaboration with related projects: **For instance: [[//Beyond the hype: AI in dementia – from early risk detection to disease treatment//>>https://www.lethe-project.eu/beyond-the-hype-ai-in-dementia-from-early-risk-detection-to-disease-treatment/]]
244 244  
245 245  ----
246 246  
247 247  === **7. Tools and Technologies** ===
248 248  
249 -==== **Programming Languages:** ====
250 -
251 -* **Python** for AI and data processing.
252 -
253 -==== **Frameworks:** ====
254 -
255 -* **TensorFlow** and **PyTorch** for machine learning.
256 -* **Flask** or **FastAPI** for backend services.
257 -
258 -==== **Visualization:** ====
259 -
260 -* **Plotly** and **Matplotlib** for interactive and static visualizations.
261 -
262 -==== **EBRAINS Services:** ====
263 -
264 -* **Collaboratory Lab** for running Notebooks.
265 -* **Buckets** for storing large datasets.
266 -
267 -----
268 -
269 -=== **Why This Matters** ===
270 -
271 -* The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.
272 -* It enables real-time tracking of disease progression across the three diagnostic axes.
273 -* It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.
102 +* **Programming Languages**: Python for AI and data processing.
103 +* **Frameworks**:
104 +** TensorFlow and PyTorch for machine learning.
105 +** Flask or FastAPI for backend services.
106 +* **Visualization**: Plotly and Matplotlib for interactive and static visualizations.
107 +* **EBRAINS Services**:
108 +** Collaboratory Lab for running Notebooks.
109 +** Buckets for storing large datasets.