Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 13.1
edited by manuelmenendez
on 2025/02/09 09:56
on 2025/02/09 09:56
Change comment:
There is no comment for this version
To version 17.1
edited by manuelmenendez
on 2025/02/09 13:01
on 2025/02/09 13:01
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,273 +1,154 @@ 1 -== ==**Overview** ====1 +== **Overview** == 2 2 3 - This projectdevelops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**.The methodology integrates**multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**.3 +Neurodiagnoses develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility.** 4 4 5 -=== **Workflow** === 5 +This methodology integrates **multi-modal data**, including: 6 +**Genetic data** (whole-genome sequencing, polygenic risk scores). 7 +**Neuroimaging** (MRI, PET, EEG, MEG). 8 +**Neurophysiological data** (EEG-based biomarkers, sleep actigraphy). 9 +**CSF & Blood Biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 6 6 7 -1. ((( 8 -**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]** 11 +By applying **machine learning models**, Neurodiagnoses generates **structured, explainable diagnostic outputs** to assist **clinical decision-making** and **biomarker-driven patient stratification.** 9 9 10 -* Create a **GitHub repository** for AI scripts and models. 11 -* Use **GitHub Projects** to manage research milestones. 12 -))) 13 -1. ((( 14 -**We Use EBRAINS for Data & Collaboration** 15 - 16 -* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**. 17 -* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models. 18 -* Use **EBRAINS Wiki** for structured documentation and research discussion. 19 -))) 20 - 21 21 ---- 22 22 23 -== =**1.Data Integration** ===15 +== **Data Integration & External Databases** == 24 24 25 -== Overview==17 +=== **How to Use External Databases in Neurodiagnoses** === 26 26 19 +Neurodiagnoses integrates data from multiple **biomedical and neurological research databases**. Researchers can follow these steps to **access, prepare, and integrate** data into the Neurodiagnoses framework. 27 27 28 -Neurodiagnoses integrates clinical data via the **EBRAINS Medical Informatics Platform (MIP)**. MIP federates decentralized clinical data, allowing Neurodiagnoses to securely access and process sensitive information for AI-based diagnostics. 21 +**Potential Data Sources** 22 +**Reference:** [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 29 29 30 -== How ItWorks ==24 +=== **Register for Access** === 31 31 26 +Each **external database** requires **individual registration** and approval. 27 +✔️ Follow the official **data access guidelines** of each provider. 28 +✔️ Ensure compliance with **ethical approvals** and **data-sharing agreements (DUAs).** 32 32 33 -1. ((( 34 -**Authentication & API Access:** 30 +=== **Download & Prepare Data** === 35 35 36 -* Users must have an **EBRAINS account**. 37 -* Neurodiagnoses uses **secure API endpoints** to fetch clinical data (e.g., from the **Federation for Dementia**). 38 -))) 39 -1. ((( 40 -**Data Mapping & Harmonization:** 32 +Once access is granted, download datasets **following compliance guidelines** and **format requirements** for integration. 41 41 42 -* Retrieved data is **normalized** and converted to standard formats (.csv, .json). 43 -* Data from **multiple sources** is harmonized to ensure consistency for AI processing. 44 -))) 45 -1. ((( 46 -**Security & Compliance:** 34 +**Supported File Formats** 47 47 48 -* Alldataaccessis **logged and monitored**.49 -* Data remains on**MIP servers**using **federated learning techniques**whenpossible.50 -* Access is grantedonlyafter signingaDataUsage Agreement (DUA)**.51 - )))36 +* **Tabular Data**: .csv, .tsv 37 +* **Neuroimaging Data**: .nii, .dcm 38 +* **Genomic Data**: .fasta, .vcf 39 +* **Clinical Metadata**: .json, .xml 52 52 53 - ==ImplementationSteps ==41 +**Mandatory Fields for Integration** 54 54 43 +|=**Field Name**|=**Description** 44 +|**Subject ID**|Unique patient identifier 45 +|**Diagnosis**|Standardized disease classification 46 +|**Biomarkers**|CSF, plasma, or imaging biomarkers 47 +|**Genetic Data**|Whole-genome or exome sequencing 48 +|**Neuroimaging Metadata**|MRI/PET acquisition parameters 55 55 56 -1. Clone the repository. 57 -1. Configure your **EBRAINS API credentials** in mip_integration.py. 58 -1. Run the script to **download and harmonize clinical data**. 59 -1. Process the data for **AI model training**. 50 +=== **Upload Data to Neurodiagnoses** === 60 60 61 -For more detailed instructions, please refer to the **[[MIP Documentation>>url:https://mip.ebrains.eu/]]**. 52 +**Option 1:** Upload to **EBRAINS Bucket** → [[Neurodiagnoses Data Storage>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]] 53 +**Option 2:** Contribute via **GitHub Repository** → [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]] 62 62 63 - ----55 +**For large datasets, please contact project administrators before uploading.** 64 64 65 -= Data Processing &IntegrationwithClinica.Run=57 +=== **Integrate Data into AI Models** === 66 66 59 +Use **Jupyter Notebooks** on EBRAINS for **data preprocessing.** 60 +Standardize data using **harmonization tools.** 61 +Train AI models with **newly integrated datasets.** 67 67 68 - ==Overview ==63 +**Reference:** [[Data Processing Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]] 69 69 65 +---- 70 70 71 - Neurodiagnosesnow supports**Clinica.Run**, an open-source neuroimaging platform designedfor **multimodaldata processing and reproducibleneuroscienceworkflows**.67 +== **AI-Powered Annotation & Machine Learning Models** == 72 72 73 - ==HowItWorks==69 +Neurodiagnoses applies **advanced machine learning models** to classify CNS diseases, extract features from **biomarkers and neuroimaging**, and provide **AI-powered annotation.** 74 74 71 +=== **AI Model Categories** === 75 75 76 -1. ((( 77 -**Neuroimaging Preprocessing:** 73 +|=**Model Type**|=**Function**|=**Example Algorithms** 74 +|**Probabilistic Diagnosis**|Assigns probability scores to multiple CNS disorders.|Random Forest, XGBoost, Bayesian Networks 75 +|**Tridimensional Diagnosis**|Classifies disorders based on Etiology, Biomarkers, and Neuroanatomical Correlations.|CNNs, Transformers, Autoencoders 76 +|**Biomarker Prediction**|Predicts missing biomarker values using regression.|KNN Imputation, Bayesian Estimation 77 +|**Neuroimaging Feature Extraction**|Extracts patterns from MRI, PET, EEG.|CNNs, Graph Neural Networks 78 +|**Clinical Decision Support**|Generates AI-driven diagnostic reports.|SHAP Explainability Tools 78 78 79 -* MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines**. 80 -* Supports **longitudinal and cross-sectional analyses**. 81 -))) 82 -1. ((( 83 -**Automated Biomarker Extraction:** 80 +**Reference:** [[AI Model Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/models.md]] 84 84 85 -* Standardized extraction of **volumetric, metabolic, and functional biomarkers**. 86 -* Integration with machine learning models in Neurodiagnoses. 87 -))) 88 -1. ((( 89 -**Data Security & Compliance:** 90 - 91 -* Clinica.Run operates in **compliance with GDPR and HIPAA**. 92 -* Neuroimaging data remains **within the original storage environment**. 93 -))) 94 - 95 -== Implementation Steps == 96 - 97 - 98 -1. Install **Clinica.Run** dependencies. 99 -1. Configure your **Clinica.Run pipeline** in clinica_run_config.json. 100 -1. Run the pipeline for **preprocessing and biomarker extraction**. 101 -1. Use processed neuroimaging data for **AI-driven diagnostics** in Neurodiagnoses. 102 - 103 -For further information, refer to **[[Clinica.Run Documentation>>url:https://clinica.run/]]**. 104 - 105 -==== ==== 106 - 107 -==== **Data Sources** ==== 108 - 109 -[[List of potential sources of databases>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 110 - 111 -**Biomedical Ontologies & Databases:** 112 - 113 -* **Human Phenotype Ontology (HPO)** for symptom annotation. 114 -* **Gene Ontology (GO)** for molecular and cellular processes. 115 - 116 -**Dimensionality Reduction and Interpretability:** 117 - 118 -* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 119 -* **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 120 - 121 -**Neuroimaging & EEG/MEG Data:** 122 - 123 -* **MRI volumetric measures** for brain atrophy tracking. 124 -* **EEG functional connectivity patterns** (AI-Mind). 125 - 126 -**Clinical & Biomarker Data:** 127 - 128 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 129 -* **Sleep monitoring and actigraphy data** (ADIS). 130 - 131 -**Federated Learning Integration:** 132 - 133 -* **Secure multi-center data harmonization** (PROMINENT). 134 - 135 135 ---- 136 136 137 -== ==**Annotation System forMulti-Modal Data** ====84 +== **Clinical Decision Support & Tridimensional Diagnostic Framework** == 138 138 139 - To ensure **structuredintegrationof diversedatasets**,**Neurodiagnoses**willimplement an **AI-drivenannotationsystem**,which will:86 +Neurodiagnoses generates **structured AI reports** for clinicians, combining: 140 140 141 -* **Assign standardized metadata tags** to diagnostic features. 142 -* **Provide contextual explanations** for AI-based classifications. 143 -* **Track temporal disease progression annotations** to identify long-term trends. 88 +**Probabilistic Diagnosis:** AI-generated ranking of potential diagnoses. 89 +**Tridimensional Classification:** Standardized diagnostic reports based on: 144 144 145 ----- 91 +1. **Axis 1:** **Etiology** → Genetic, Autoimmune, Prion, Toxic, Vascular. 92 +1. **Axis 2:** **Molecular Markers** → CSF, Neuroinflammation, EEG biomarkers. 93 +1. **Axis 3:** **Neuroanatomoclinical Correlations** → MRI atrophy, PET. 146 146 147 - ===**2.AI-BasedAnalysis** ===95 +**Reference:** [[Tridimensional Classification Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/classification.md]] 148 148 149 -==== **Machine Learning & Deep Learning Models** ==== 150 - 151 -**Risk Prediction Models:** 152 - 153 -* **LETHE’s cognitive risk prediction model** integrated into the annotation framework. 154 - 155 -**Biomarker Classification & Probabilistic Imputation:** 156 - 157 -* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. 158 - 159 -**Neuroimaging Feature Extraction:** 160 - 161 -* **MRI & EEG data** annotated with **neuroanatomical feature labels**. 162 - 163 -==== **AI-Powered Annotation System** ==== 164 - 165 -* Uses **SHAP-based interpretability tools** to explain model decisions. 166 -* Generates **automated clinical annotations** in structured reports. 167 -* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). 168 - 169 169 ---- 170 170 171 -== =**3.Diagnostic Framework&ClinicalDecisionSupport** ===99 +== **Data Security, Compliance & Federated Learning** == 172 172 173 -==== **Tridimensional Diagnostic Axes** ==== 101 +✔ **Privacy-Preserving AI**: Implements **Federated Learning**, ensuring that patient data **never leaves** local institutions. 102 +✔ **Secure Data Access**: Data remains **stored in EBRAINS MIP servers** using **differential privacy techniques.** 103 +✔ **Ethical & GDPR Compliance**: Data-sharing agreements **must be signed** before use. 174 174 175 -** Axis 1:Etiology(PathogenicMechanisms)**105 +**Reference:** [[Data Protection & Federated Learning>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/security.md]] 176 176 177 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 178 -* **AI-assisted annotation** provides **causal interpretations** for clinical use. 179 - 180 -**Axis 2: Molecular Markers & Biomarkers** 181 - 182 -* **Integration of CSF, blood, and neuroimaging biomarkers**. 183 -* **Structured annotation** highlights **biological pathways linked to diagnosis**. 184 - 185 -**Axis 3: Neuroanatomoclinical Correlations** 186 - 187 -* **MRI and EEG data** provide anatomical and functional insights. 188 -* **AI-generated progression maps** annotate **brain structure-function relationships**. 189 - 190 190 ---- 191 191 192 -== =**4. ComputationalWorkflow&AnnotationPipelines** ===109 +== **Data Processing & Integration with Clinica.Run** == 193 193 194 - ====**DataProcessingSteps**====111 +Neurodiagnoses now supports **Clinica.Run**, an **open-source neuroimaging platform** for **multimodal data processing.** 195 195 196 -** DataIngestion:**113 +=== **How It Works** === 197 197 198 -* **Harmonized datasets** stored in **EBRAINS Bucket**. 199 -* **Preprocessing pipelines** clean and standardize data. 115 +✔ **Neuroimaging Preprocessing**: MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines.** 116 +✔ **Automated Biomarker Extraction**: Extracts volumetric, metabolic, and functional biomarkers. 117 +✔ **Data Security & Compliance**: Clinica.Run is **GDPR & HIPAA-compliant.** 200 200 201 -** FeatureEngineering:**119 +=== **Implementation Steps** === 202 202 203 -* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. 121 +1. Install **Clinica.Run** dependencies. 122 +1. Configure **Clinica.Run pipeline** in clinica_run_config.json. 123 +1. Run **biomarker extraction pipelines** for AI-based diagnostics. 204 204 205 -** AI-GeneratedAnnotations:**125 +**Reference:** [[Clinica.Run Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/clinica_run.md]] 206 206 207 -* **Automated tagging** of diagnostic features in **structured reports**. 208 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 209 - 210 -**Clinical Decision Support Integration:** 211 - 212 -* **AI-annotated findings** fed into **interactive dashboards**. 213 -* **Clinicians can adjust, validate, and modify annotations**. 214 - 215 215 ---- 216 216 217 -== =**5. Validation & Real-World Testing** ===129 +== **Collaborative Development & Research** == 218 218 219 - ====**ProspectiveClinicalStudy**====131 +**We Use GitHub to Develop AI Models & Store Research Data** 220 220 221 -* ** Multi-centervalidation**ofAI-based**annotations & riskstratifications**.222 -* ** Benchmarkingagainstclinician-baseddiagnoses**.223 -* ** Real-worldtesting** of AI-powered **structuredreporting**.133 +* **GitHub Repository:** AI model training scripts. 134 +* **GitHub Issues:** Tracks ongoing research questions. 135 +* **GitHub Wiki:** Project documentation & user guides. 224 224 225 - ====**QualityAssurance&Explainability**====137 +**We Use EBRAINS for Data & Collaboration** 226 226 227 -* **Annotations linked to structured knowledge graphs** for improved transparency. 228 -* **Interactive annotation editor** allows clinicians to validate AI outputs. 139 +* **EBRAINS Buckets:** Large-scale neuroimaging and biomarker storage. 140 +* **EBRAINS Jupyter Notebooks:** Cloud-based AI model execution. 141 +* **EBRAINS Wiki:** Research documentation and updates. 229 229 230 --- --143 +**Join the Project Forum:** [[GitHub Discussions>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]] 231 231 232 -=== **6. Collaborative Development** === 233 - 234 -The project is **open to contributions** from **researchers, clinicians, and developers**. 235 - 236 -**Key tools include:** 237 - 238 -* **Jupyter Notebooks**: For data analysis and pipeline development. 239 -** Example: **probabilistic imputation** 240 -* **Wiki Pages**: For documenting methods and results. 241 -* **Drive and Bucket**: For sharing code, data, and outputs. 242 -* **Collaboration with related projects**: 243 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 244 - 245 245 ---- 246 246 247 - ===**7. ToolsandTechnologies**===147 +**For Additional Documentation:** 248 248 249 -==== **Programming Languages:** ==== 149 +* **GitHub Repository:** [[Neurodiagnoses AI Models>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]] 150 +* **EBRAINS Wiki:** [[Neurodiagnoses Research Collaboration>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]] 250 250 251 -* **Python** for AI and data processing. 252 - 253 -==== **Frameworks:** ==== 254 - 255 -* **TensorFlow** and **PyTorch** for machine learning. 256 -* **Flask** or **FastAPI** for backend services. 257 - 258 -==== **Visualization:** ==== 259 - 260 -* **Plotly** and **Matplotlib** for interactive and static visualizations. 261 - 262 -==== **EBRAINS Services:** ==== 263 - 264 -* **Collaboratory Lab** for running Notebooks. 265 -* **Buckets** for storing large datasets. 266 - 267 267 ---- 268 268 269 -=== **Why This Matters** === 270 - 271 -* The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful. 272 -* It enables real-time tracking of disease progression across the three diagnostic axes. 273 -* It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows. 154 +**Neurodiagnoses is Open for Contributions – Join Us Today!**