Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 14.1
edited by manuelmenendez
on 2025/02/09 09:58
Change comment: There is no comment for this version
To version 19.1
edited by manuelmenendez
on 2025/02/14 13:57
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,268 +1,207 @@
1 -==== **Overview** ====
1 +**# Neurodiagnoses AI: Multimodal AI for Neurodiagnostic Predictions**
2 2  
3 -This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**.
3 +## **Project Overview**
4 +Neurodiagnoses AI implements AI-driven diagnostic and prognostic models for central nervous system (CNS) disorders, adapting the Florey Dementia Index (FDI) methodology to a broader set of neurological conditions. The approach integrates **multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics) and employs **machine learning models** to provide **explainable, real-time diagnostic insights**.##
4 4  
5 -=== **Workflow** ===
6 +## **How to Use External Databases in Neurodiagnoses**
7 +To enhance diagnostic accuracy, Neurodiagnoses integrates data from multiple biomedical and neurological research databases. Researchers can follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework.##
6 6  
7 -1. (((
8 -**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]**
9 +### **Potential Data Sources**
10 +Neurodiagnoses maintains an updated list of potential biomedical databases relevant to neurodegenerative diseases. ##
9 9  
10 -* Create a **GitHub repository** for AI scripts and models.
11 -* Use **GitHub Projects** to manage research milestones.
12 -)))
13 -1. (((
14 -**We Use EBRAINS for Data & Collaboration**
12 +**Reference: List of Potential Databases**
13 +- **ADNI**: Alzheimer's Disease data ([ADNI](https://adni.loni.usc.edu))
14 +- **PPMI**: Parkinson’s Disease Imaging and biospecimens ([PPMI](https://www.ppmi-info.org))
15 +- **GP2**: Whole-genome sequencing for PD ([GP2](https://gp2.org))
16 +- **Enroll-HD**: Huntington’s Disease Clinical and genetic data ([Enroll-HD](https://www.enroll-hd.org))
17 +- **GAAIN**: Multi-source Alzheimer’s data aggregation ([GAAIN](https://gaain.org))
18 +- **UK Biobank**: Population-wide genetic, imaging, and health records ([UK Biobank](https://www.ukbiobank.ac.uk))
19 +- **DPUK**: Dementia and Aging data ([DPUK](https://www.dementiasplatform.uk))
20 +- **PRION Registry**: Prion Diseases clinical and genetic data ([PRION Registry](https://prionregistry.org))
21 +- **DECIPHER**: Rare genetic disorder genomic variants ([DECIPHER](https://decipher.sanger.ac.uk))
15 15  
16 -* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**.
17 -* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models.
18 -* Use **EBRAINS Wiki** for structured documentation and research discussion.
19 -)))
23 +### **1. Register for Access**
24 +- Each external database requires **individual registration** and access approval.
25 +- Ensure compliance with **ethical approvals** and **data usage agreements** before integrating datasets into Neurodiagnoses.
26 +- Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data.##
20 20  
21 -----
28 +### **2. Download & Prepare Data**
29 +- Download datasets while adhering to database usage policies.
30 +- Ensure files meet **Neurodiagnoses format requirements**:
31 + - **Tabular Data**: `.csv`, `.tsv`
32 + - **Neuroimaging Data**: `.nii`, `.dcm`
33 + - **Genomic Data**: `.fasta`, `.vcf`
34 + - **Clinical Metadata**: `.json`, `.xml`##
22 22  
23 -=== **1. Data Integration** ===
36 +- **Mandatory Fields for Integration**:
37 + - **Subject ID**: Unique patient identifier
38 + - **Diagnosis**: Standardized disease classification
39 + - **Biomarkers**: CSF, plasma, or imaging biomarkers
40 + - **Genetic Data**: Whole-genome or exome sequencing
41 + - **Neuroimaging Metadata**: MRI/PET acquisition parameters
24 24  
25 -=== **EBRAINS Medical Informatics Platform (MIP)**. ===
43 +### **3. Upload Data to Neurodiagnoses**
44 +**Option 1: Upload to EBRAINS Bucket**
45 +- Location: **EBRAINS Neurodiagnoses Bucket**
46 +- Ensure correct **metadata tagging** before submission.##
26 26  
27 -Neurodiagnoses integrates clinical data via the **EBRAINS Medical Informatics Platform (MIP)**. MIP federates decentralized clinical data, allowing Neurodiagnoses to securely access and process sensitive information for AI-based diagnostics.
48 + **Option 2: Contribute via GitHub Repository**
49 +- Location: **GitHub Data Repository**
50 +- Create a new folder under `/data/` and include a **dataset description**.
51 +- For large datasets, contact project administrators before uploading.
28 28  
29 -==== How It Works ====
53 +### **4. Integrate Data into AI Models**
54 +- Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**.
55 +- Standardize **neuroimaging and biomarker formats** using harmonization tools.
56 +- Use **machine learning models** to handle missing data and feature extraction.
57 +- Train AI models with **newly integrated patient cohorts**.##
30 30  
59 +**Reference**: See `docs/data_processing.md` for detailed instructions.
31 31  
32 -1. (((
33 -**Authentication & API Access:**
61 +## **Collaboration & Partnerships**##
62 +# **Partnering with Data Providers**
63 +Neurodiagnoses seeks partnerships with data repositories to:
64 +- Enable **API-based data integration** for real-time processing.
65 +- Co-develop **harmonized AI-ready datasets** with standardized annotations.
66 +- Secure **funding opportunities** through joint grant applications.
34 34  
35 -* Users must have an **EBRAINS account**.
36 -* Neurodiagnoses uses **secure API endpoints** to fetch clinical data (e.g., from the **Federation for Dementia**).
37 -)))
38 -1. (((
39 -**Data Mapping & Harmonization:**
68 +**Interested in Partnering?**
69 +- If you represent a research consortium or database provider, reach out to explore data-sharing agreements.
70 +- **Contact**: info@neurodiagnoses.com
40 40  
41 -* Retrieved data is **normalized** and converted to standard formats (.csv, .json).
42 -* Data from **multiple sources** is harmonized to ensure consistency for AI processing.
43 -)))
44 -1. (((
45 -**Security & Compliance:**
72 +## **Final Notes**
73 +Neurodiagnoses continuously expands its data ecosystem to support AI-driven clinical decision-making. Researchers and institutions are encouraged to contribute **new datasets and methodologies**.##
46 46  
47 -* All data access is **logged and monitored**.
48 -* Data remains on **MIP servers** using **federated learning techniques** when possible.
49 -* Access is granted only after signing a **Data Usage Agreement (DUA)**.
50 -)))
75 +For additional technical documentation:
76 +- **GitHub Repository**: [Neurodiagnoses GitHub](https://github.com/neurodiagnoses)
77 +- **EBRAINS Collaboration Page**: [EBRAINS Neurodiagnoses](https://ebrains.eu/collabs/neurodiagnoses)
51 51  
52 -==== Implementation Steps ====
79 +If you experience issues integrating data, **open a GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**.
53 53  
81 +== **How to Use External Databases in Neurodiagnoses** ==
54 54  
55 -1. Clone the repository.
56 -1. Configure your **EBRAINS API credentials** in mip_integration.py.
57 -1. Run the script to **download and harmonize clinical data**.
58 -1. Process the data for **AI model training**.
83 +To enhance the accuracy of our diagnostic models, Neurodiagnoses integrates data from multiple biomedical and neurological research databases. If you are a researcher, follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework.
59 59  
60 -For more detailed instructions, please refer to the **[[MIP Documentation>>url:https://mip.ebrains.eu/]]**.
85 +=== **Potential Data Sources** ===
61 61  
62 -----
87 +Neurodiagnoses maintains an updated list of potential biomedical databases relevant to neurodegenerative diseases.
63 63  
64 -=== Data Processing & Integration with Clinica.Run ===
89 +* Reference: [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]]
65 65  
66 -Neurodiagnoses now supports **Clinica.Run**, an open-source neuroimaging platform designed for **multimodal data processing and reproducible neuroscience workflows**.
91 +=== **1. Register for Access** ===
67 67  
68 -==== How It Works ====
93 +Each external database requires individual registration and access approval. Follow the official guidelines of each database provider.
69 69  
95 +* Ensure that you have completed all ethical approvals and data access agreements before integrating datasets into Neurodiagnoses.
96 +* Some repositories require a Data Usage Agreement (DUA) before downloading sensitive medical data.
70 70  
71 -1. (((
72 -**Neuroimaging Preprocessing:**
98 +=== **2. Download & Prepare Data** ===
73 73  
74 -* MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines**.
75 -* Supports **longitudinal and cross-sectional analyses**.
76 -)))
77 -1. (((
78 -**Automated Biomarker Extraction:**
100 +Once access is granted, download datasets while complying with data usage policies. Ensure that the files meet Neurodiagnoses’ format requirements for smooth integration.
79 79  
80 -* Standardized extraction of **volumetric, metabolic, and functional biomarkers**.
81 -* Integration with machine learning models in Neurodiagnoses.
82 -)))
83 -1. (((
84 -**Data Security & Compliance:**
102 +==== **Supported File Formats** ====
85 85  
86 -* Clinica.Run operates in **compliance with GDPR and HIPAA**.
87 -* Neuroimaging data remains **within the original storage environment**.
88 -)))
104 +* Tabular Data: .csv, .tsv
105 +* Neuroimaging Data: .nii, .dcm
106 +* Genomic Data: .fasta, .vcf
107 +* Clinical Metadata: .json, .xml
89 89  
90 -==== Implementation Steps ====
109 +==== **Mandatory Fields for Integration** ====
91 91  
111 +|=Field Name|=Description
112 +|Subject ID|Unique patient identifier
113 +|Diagnosis|Standardized disease classification
114 +|Biomarkers|CSF, plasma, or imaging biomarkers
115 +|Genetic Data|Whole-genome or exome sequencing
116 +|Neuroimaging Metadata|MRI/PET acquisition parameters
92 92  
93 -1. Install **Clinica.Run** dependencies.
94 -1. Configure your **Clinica.Run pipeline** in clinica_run_config.json.
95 -1. Run the pipeline for **preprocessing and biomarker extraction**.
96 -1. Use processed neuroimaging data for **AI-driven diagnostics** in Neurodiagnoses.
118 +=== **3. Upload Data to Neurodiagnoses** ===
97 97  
98 -For further information, refer to **[[Clinica.Run Documentation>>url:https://clinica.run/]]**.
120 +Once preprocessed, data can be uploaded to EBRAINS or GitHub.
99 99  
100 -==== ====
122 +* (((
123 +**Option 1: Upload to EBRAINS Bucket**
101 101  
102 -==== **Data Sources** ====
125 +* Location: [[EBRAINS Neurodiagnoses Bucket>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]]
126 +* Ensure correct metadata tagging before submission.
127 +)))
128 +* (((
129 +**Option 2: Contribute via GitHub Repository**
103 103  
104 -[[List of potential sources of databases>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]]
131 +* Location: [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]]
132 +* Create a new folder under /data/ and include dataset description.
133 +)))
105 105  
106 -**Biomedical Ontologies & Databases:**
135 +//Note: For large datasets, please contact the project administrators before uploading.//
107 107  
108 -* **Human Phenotype Ontology (HPO)** for symptom annotation.
109 -* **Gene Ontology (GO)** for molecular and cellular processes.
137 +=== **4. Integrate Data into AI Models** ===
110 110  
111 -**Dimensionality Reduction and Interpretability:**
139 +Once uploaded, datasets must be harmonized and formatted before AI model training.
112 112  
113 -* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**.
114 -* **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts.
141 +==== **Steps for Data Integration** ====
115 115  
116 -**Neuroimaging & EEG/MEG Data:**
143 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts.
144 +* Standardize neuroimaging and biomarker formats using harmonization tools.
145 +* Use machine learning models to handle missing data and feature extraction.
146 +* Train AI models with newly integrated patient cohorts.
147 +* Reference: [[Detailed instructions can be found in docs/data_processing.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]].
117 117  
118 -* **MRI volumetric measures** for brain atrophy tracking.
119 -* **EEG functional connectivity patterns** (AI-Mind).
120 -
121 -**Clinical & Biomarker Data:**
122 -
123 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light).
124 -* **Sleep monitoring and actigraphy data** (ADIS).
125 -
126 -**Federated Learning Integration:**
127 -
128 -* **Secure multi-center data harmonization** (PROMINENT).
129 -
130 130  ----
131 131  
132 -==== **Annotation System for Multi-Modal Data** ====
151 +== **Database Sources Table** ==
133 133  
134 -To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will:
153 +=== **Where to Insert This** ===
135 135  
136 -* **Assign standardized metadata tags** to diagnostic features.
137 -* **Provide contextual explanations** for AI-based classifications.
138 -* **Track temporal disease progression annotations** to identify long-term trends.
155 +* GitHub: [[docs/data_sources.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_sources.md]]
156 +* EBRAINS Wiki: Collabs/neurodiagnoses/Data Sources
139 139  
140 -----
158 +=== **Key Databases for Neurodiagnoses** ===
141 141  
142 -=== **2. AI-Based Analysis** ===
160 +|=Database|=Focus Area|=Data Type|=Access Link
161 +|ADNI|Alzheimer's Disease|MRI, PET, CSF, cognitive tests|ADNI
162 +|PPMI|Parkinson’s Disease|Imaging, biospecimens|[[PPMI>>url:https://www.ppmi-info.org/]]
163 +|GP2|Genetic Data for PD|Whole-genome sequencing|[[GP2>>url:https://gp2.org/]]
164 +|Enroll-HD|Huntington’s Disease|Clinical, genetic, imaging|[[Enroll-HD>>url:https://enroll-hd.org/]]
165 +|GAAIN|Alzheimer's & Cognitive Decline|Multi-source data aggregation|[[GAAIN>>url:https://www.gaain.org/]]
166 +|UK Biobank|Population-wide studies|Genetic, imaging, health records|[[UK Biobank>>url:https://www.ukbiobank.ac.uk/]]
167 +|DPUK|Dementia & Aging|Imaging, genetics, lifestyle factors|[[DPUK>>url:https://www.dementiasplatform.uk/]]
168 +|PRION Registry|Prion Diseases|Clinical and genetic data|[[PRION Registry>>url:https://www.prionalliance.org/]]
169 +|DECIPHER|Rare Genetic Disorders|Genomic variants|DECIPHER
143 143  
144 -==== **Machine Learning & Deep Learning Models** ====
171 +If you know a relevant dataset, submit a proposal in [[GitHub Issues>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]].
145 145  
146 -**Risk Prediction Models:**
147 -
148 -* **LETHE’s cognitive risk prediction model** integrated into the annotation framework.
149 -
150 -**Biomarker Classification & Probabilistic Imputation:**
151 -
152 -* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**.
153 -
154 -**Neuroimaging Feature Extraction:**
155 -
156 -* **MRI & EEG data** annotated with **neuroanatomical feature labels**.
157 -
158 -==== **AI-Powered Annotation System** ====
159 -
160 -* Uses **SHAP-based interpretability tools** to explain model decisions.
161 -* Generates **automated clinical annotations** in structured reports.
162 -* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**).
163 -
164 164  ----
165 165  
166 -=== **3. Diagnostic Framework & Clinical Decision Support** ===
175 +== **Collaboration & Partnerships** ==
167 167  
168 -==== **Tridimensional Diagnostic Axes** ====
177 +=== **Where to Insert This** ===
169 169  
170 -**Axis 1: Etiology (Pathogenic Mechanisms)**
179 +* GitHub: [[docs/collaboration.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/collaboration.md]]
180 +* EBRAINS Wiki: Collabs/neurodiagnoses/Collaborations
171 171  
172 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**.
173 -* **AI-assisted annotation** provides **causal interpretations** for clinical use.
182 +=== **Partnering with Data Providers** ===
174 174  
175 -**Axis 2: Molecular Markers & Biomarkers**
184 +Beyond using existing datasets, Neurodiagnoses seeks partnerships with data repositories to:
176 176  
177 -* **Integration of CSF, blood, and neuroimaging biomarkers**.
178 -* **Structured annotation** highlights **biological pathways linked to diagnosis**.
186 +* Enable direct API-based data integration for real-time processing.
187 +* Co-develop harmonized AI-ready datasets with standardized annotations.
188 +* Secure funding opportunities through joint grant applications.
179 179  
180 -**Axis 3: Neuroanatomoclinical Correlations**
190 +=== **Interested in Partnering?** ===
181 181  
182 -* **MRI and EEG data** provide anatomical and functional insights.
183 -* **AI-generated progression maps** annotate **brain structure-function relationships**.
192 +If you represent a research consortium or database provider, reach out to explore data-sharing agreements.
184 184  
185 -----
194 +* Contact: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]
186 186  
187 -=== **4. Computational Workflow & Annotation Pipelines** ===
188 -
189 -==== **Data Processing Steps** ====
190 -
191 -**Data Ingestion:**
192 -
193 -* **Harmonized datasets** stored in **EBRAINS Bucket**.
194 -* **Preprocessing pipelines** clean and standardize data.
195 -
196 -**Feature Engineering:**
197 -
198 -* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**.
199 -
200 -**AI-Generated Annotations:**
201 -
202 -* **Automated tagging** of diagnostic features in **structured reports**.
203 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions.
204 -
205 -**Clinical Decision Support Integration:**
206 -
207 -* **AI-annotated findings** fed into **interactive dashboards**.
208 -* **Clinicians can adjust, validate, and modify annotations**.
209 -
210 210  ----
211 211  
212 -=== **5. Validation & Real-World Testing** ===
198 +== **Final Notes** ==
213 213  
214 -==== **Prospective Clinical Study** ====
200 +Neurodiagnoses continuously expands its data ecosystem to support AI-driven clinical decision-making. Researchers and institutions are encouraged to contribute new datasets and methodologies.
215 215  
216 -* **Multi-center validation** of AI-based **annotations & risk stratifications**.
217 -* **Benchmarking against clinician-based diagnoses**.
218 -* **Real-world testing** of AI-powered **structured reporting**.
202 +For additional technical documentation:
219 219  
220 -==== **Quality Assurance & Explainability** ====
204 +* [[GitHub Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]]
205 +* [[EBRAINS Collaboration Page>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]]
221 221  
222 -* **Annotations linked to structured knowledge graphs** for improved transparency.
223 -* **Interactive annotation editor** allows clinicians to validate AI outputs.
224 -
225 -----
226 -
227 -=== **6. Collaborative Development** ===
228 -
229 -The project is **open to contributions** from **researchers, clinicians, and developers**.
230 -
231 -**Key tools include:**
232 -
233 -* **Jupyter Notebooks**: For data analysis and pipeline development.
234 -** Example: **probabilistic imputation**
235 -* **Wiki Pages**: For documenting methods and results.
236 -* **Drive and Bucket**: For sharing code, data, and outputs.
237 -* **Collaboration with related projects**:
238 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment**
239 -
240 -----
241 -
242 -=== **7. Tools and Technologies** ===
243 -
244 -==== **Programming Languages:** ====
245 -
246 -* **Python** for AI and data processing.
247 -
248 -==== **Frameworks:** ====
249 -
250 -* **TensorFlow** and **PyTorch** for machine learning.
251 -* **Flask** or **FastAPI** for backend services.
252 -
253 -==== **Visualization:** ====
254 -
255 -* **Plotly** and **Matplotlib** for interactive and static visualizations.
256 -
257 -==== **EBRAINS Services:** ====
258 -
259 -* **Collaboratory Lab** for running Notebooks.
260 -* **Buckets** for storing large datasets.
261 -
262 -----
263 -
264 -=== **Why This Matters** ===
265 -
266 -* The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.
267 -* It enables real-time tracking of disease progression across the three diagnostic axes.
268 -* It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.
207 +If you experience issues integrating data, open a [[GitHub Issue>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]] or consult the EBRAINS Neurodiagnoses Forum.