Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 14.1
edited by manuelmenendez
on 2025/02/09 09:58
Change comment: There is no comment for this version
To version 21.1
edited by manuelmenendez
on 2025/02/14 22:09
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,268 +1,148 @@
1 -==== **Overview** ====
1 +Here is the updated **Methodology** section for the EBRAINS Wiki, incorporating the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)** for **biomarker classification across all neurodegenerative diseases**.
2 2  
3 -This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**.
4 -
5 -=== **Workflow** ===
6 -
7 -1. (((
8 -**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]**
9 -
10 -* Create a **GitHub repository** for AI scripts and models.
11 -* Use **GitHub Projects** to manage research milestones.
12 -)))
13 -1. (((
14 -**We Use EBRAINS for Data & Collaboration**
15 -
16 -* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**.
17 -* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models.
18 -* Use **EBRAINS Wiki** for structured documentation and research discussion.
19 -)))
20 -
21 21  ----
22 22  
23 -=== **1. Data Integration** ===
5 +== **Neurodiagnoses AI: Multimodal AI for Neurodiagnostic Predictions** ==
24 24  
25 -=== **EBRAINS Medical Informatics Platform (MIP)**. ===
7 +=== **Project Overview** ===
26 26  
27 -Neurodiagnoses integrates clinical data via the **EBRAINS Medical Informatics Platform (MIP)**. MIP federates decentralized clinical data, allowing Neurodiagnoses to securely access and process sensitive information for AI-based diagnostics.
9 +Neurodiagnoses AI implements **AI-driven diagnostic and prognostic models** for central nervous system (CNS) disorders, expanding the **Florey Dementia Index (FDI) methodology** to a broader set of neurological conditions. The approach integrates **multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics) and employs machine learning models to provide **explainable, real-time diagnostic insights**. This framework now incorporates **Neuromarker**, a **generalized biomarker ontology** that categorizes biomarkers across neurodegenerative diseases, enabling **standardized, cross-disease AI training**.
28 28  
29 -==== How It Works ====
11 +== **Neuromarker: Generalized Biomarker Ontology** ==
30 30  
13 +Neuromarker extends the **Common Alzheimer’s Disease Research Ontology (CADRO)** into a **cross-disease biomarker categorization framework** applicable to all neurodegenerative diseases (NDDs). It allows for **standardized classification, AI-based feature extraction, and multimodal integration**.
31 31  
32 -1. (((
33 -**Authentication & API Access:**
15 +=== **Core Biomarker Categories** ===
34 34  
35 -* Users must have an **EBRAINS account**.
36 -* Neurodiagnoses uses **secure API endpoints** to fetch clinical data (e.g., from the **Federation for Dementia**).
37 -)))
38 -1. (((
39 -**Data Mapping & Harmonization:**
17 +The following ontology is used within **Neurodiagnoses AI** for biomarker categorization:
40 40  
41 -* Retrieved data is **normalized** and converted to standard formats (.csv, .json).
42 -* Data from **multiple sources** is harmonized to ensure consistency for AI processing.
43 -)))
44 -1. (((
45 -**Security & Compliance:**
19 +|=**Category**|=**Description**
20 +|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic)
21 +|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein)
22 +|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL
23 +|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers
24 +|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers
25 +|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS)
26 +|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores
27 +|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities
46 46  
47 -* All data access is **logged and monitored**.
48 -* Data remains on **MIP servers** using **federated learning techniques** when possible.
49 -* Access is granted only after signing a **Data Usage Agreement (DUA)**.
50 -)))
51 -
52 -==== Implementation Steps ====
53 -
54 -
55 -1. Clone the repository.
56 -1. Configure your **EBRAINS API credentials** in mip_integration.py.
57 -1. Run the script to **download and harmonize clinical data**.
58 -1. Process the data for **AI model training**.
59 -
60 -For more detailed instructions, please refer to the **[[MIP Documentation>>url:https://mip.ebrains.eu/]]**.
61 -
62 62  ----
63 63  
64 -=== Data Processing & Integration with Clinica.Run ===
31 +== **How to Use External Databases in Neurodiagnoses** ==
65 65  
66 -Neurodiagnoses now supports **Clinica.Run**, an open-source neuroimaging platform designed for **multimodal data processing and reproducible neuroscience workflows**.
33 +To enhance diagnostic accuracy, Neurodiagnoses AI integrates data from **multiple biomedical and neurological research databases**. Researchers can follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework.
67 67  
68 -==== How It Works ====
35 +=== **Potential Data Sources** ===
69 69  
37 +Neurodiagnoses maintains an **updated list** of biomedical datasets relevant to neurodegenerative diseases:
70 70  
71 -1. (((
72 -**Neuroimaging Preprocessing:**
39 +* **ADNI**: Alzheimer's Disease Imaging & Biomarkers → [[ADNI>>url:https://adni.loni.usc.edu/]]
40 +* **PPMI**: Parkinson’s Disease Imaging & Biospecimens → [[PPMI>>url:https://www.ppmi-info.org/]]
41 +* **GP2**: Whole-Genome Sequencing for PD → [[GP2>>url:https://gp2.org/]]
42 +* **Enroll-HD**: Huntington’s Disease Clinical & Genetic Data → [[Enroll-HD>>url:https://www.enroll-hd.org/]]
43 +* **GAAIN**: Multi-Source Alzheimer’s Data Aggregation → [[GAAIN>>url:https://gaain.org/]]
44 +* **UK Biobank**: Population-Wide Genetic, Imaging & Health Records → [[UK Biobank>>url:https://www.ukbiobank.ac.uk/]]
45 +* **DPUK**: Dementia & Aging Data → [[DPUK>>url:https://www.dementiasplatform.uk/]]
46 +* **PRION Registry**: Prion Diseases Clinical & Genetic Data → [[PRION Registry>>url:https://prionregistry.org/]]
47 +* **DECIPHER**: Rare Genetic Disorder Genomic Variants → [[DECIPHER>>url:https://decipher.sanger.ac.uk/]]
73 73  
74 -* MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines**.
75 -* Supports **longitudinal and cross-sectional analyses**.
76 -)))
77 -1. (((
78 -**Automated Biomarker Extraction:**
79 -
80 -* Standardized extraction of **volumetric, metabolic, and functional biomarkers**.
81 -* Integration with machine learning models in Neurodiagnoses.
82 -)))
83 -1. (((
84 -**Data Security & Compliance:**
85 -
86 -* Clinica.Run operates in **compliance with GDPR and HIPAA**.
87 -* Neuroimaging data remains **within the original storage environment**.
88 -)))
89 -
90 -==== Implementation Steps ====
91 -
92 -
93 -1. Install **Clinica.Run** dependencies.
94 -1. Configure your **Clinica.Run pipeline** in clinica_run_config.json.
95 -1. Run the pipeline for **preprocessing and biomarker extraction**.
96 -1. Use processed neuroimaging data for **AI-driven diagnostics** in Neurodiagnoses.
97 -
98 -For further information, refer to **[[Clinica.Run Documentation>>url:https://clinica.run/]]**.
99 -
100 -==== ====
101 -
102 -==== **Data Sources** ====
103 -
104 -[[List of potential sources of databases>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]]
105 -
106 -**Biomedical Ontologies & Databases:**
107 -
108 -* **Human Phenotype Ontology (HPO)** for symptom annotation.
109 -* **Gene Ontology (GO)** for molecular and cellular processes.
110 -
111 -**Dimensionality Reduction and Interpretability:**
112 -
113 -* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**.
114 -* **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts.
115 -
116 -**Neuroimaging & EEG/MEG Data:**
117 -
118 -* **MRI volumetric measures** for brain atrophy tracking.
119 -* **EEG functional connectivity patterns** (AI-Mind).
120 -
121 -**Clinical & Biomarker Data:**
122 -
123 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light).
124 -* **Sleep monitoring and actigraphy data** (ADIS).
125 -
126 -**Federated Learning Integration:**
127 -
128 -* **Secure multi-center data harmonization** (PROMINENT).
129 -
130 130  ----
131 131  
132 -==== **Annotation System for Multi-Modal Data** ====
51 +== **1. Register for Access** ==
133 133  
134 -To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will:
53 +* Each external database requires **individual registration and access approval**.
54 +* Ensure compliance with **ethical approvals and data usage agreements** before integrating datasets into Neurodiagnoses.
55 +* Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data.
135 135  
136 -* **Assign standardized metadata tags** to diagnostic features.
137 -* **Provide contextual explanations** for AI-based classifications.
138 -* **Track temporal disease progression annotations** to identify long-term trends.
139 -
140 140  ----
141 141  
142 -=== **2. AI-Based Analysis** ===
59 +== **2. Download & Prepare Data** ==
143 143  
144 -==== **Machine Learning & Deep Learning Models** ====
61 +* Download datasets while adhering to **database usage policies**.
62 +* Ensure files meet **Neurodiagnoses format requirements**:
145 145  
146 -**Risk Prediction Models:**
64 +|=**Data Type**|=**Accepted Formats**
65 +|**Tabular Data**|.csv, .tsv
66 +|**Neuroimaging**|.nii, .dcm
67 +|**Genomic Data**|.fasta, .vcf
68 +|**Clinical Metadata**|.json, .xml
147 147  
148 -* **LETHE’s cognitive risk prediction model** integrated into the annotation framework.
70 +* **Mandatory Fields for Integration**:
71 +** **Subject ID**: Unique patient identifier
72 +** **Diagnosis**: Standardized disease classification
73 +** **Biomarkers**: CSF, plasma, or imaging biomarkers
74 +** **Genetic Data**: Whole-genome or exome sequencing
75 +** **Neuroimaging Metadata**: MRI/PET acquisition parameters
149 149  
150 -**Biomarker Classification & Probabilistic Imputation:**
77 +----
151 151  
152 -* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**.
79 +== **3. Upload Data to Neurodiagnoses** ==
153 153  
154 -**Neuroimaging Feature Extraction:**
81 +=== **Option 1: Upload to EBRAINS Bucket** ===
155 155  
156 -* **MRI & EEG data** annotated with **neuroanatomical feature labels**.
83 +* Location: **EBRAINS Neurodiagnoses Bucket**
84 +* Ensure **correct metadata tagging** before submission.
157 157  
158 -==== **AI-Powered Annotation System** ====
86 +=== **Option 2: Contribute via GitHub Repository** ===
159 159  
160 -* Uses **SHAP-based interpretability tools** to explain model decisions.
161 -* Generates **automated clinical annotations** in structured reports.
162 -* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**).
88 +* Location: **GitHub Data Repository**
89 +* Create a **new folder under /data/** and include a **dataset description**.
90 +* **For large datasets**, contact project administrators before uploading.
163 163  
164 164  ----
165 165  
166 -=== **3. Diagnostic Framework & Clinical Decision Support** ===
94 +== **4. Integrate Data into AI Models** ==
167 167  
168 -==== **Tridimensional Diagnostic Axes** ====
96 +* Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**.
97 +* **Standardize neuroimaging and biomarker formats** using harmonization tools.
98 +* Use **machine learning models** to handle **missing data** and **feature extraction**.
99 +* Train AI models with **newly integrated patient cohorts**.
169 169  
170 -**Axis 1: Etiology (Pathogenic Mechanisms)**
101 +**Reference**: See docs/data_processing.md for detailed instructions.
171 171  
172 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**.
173 -* **AI-assisted annotation** provides **causal interpretations** for clinical use.
174 -
175 -**Axis 2: Molecular Markers & Biomarkers**
176 -
177 -* **Integration of CSF, blood, and neuroimaging biomarkers**.
178 -* **Structured annotation** highlights **biological pathways linked to diagnosis**.
179 -
180 -**Axis 3: Neuroanatomoclinical Correlations**
181 -
182 -* **MRI and EEG data** provide anatomical and functional insights.
183 -* **AI-generated progression maps** annotate **brain structure-function relationships**.
184 -
185 185  ----
186 186  
187 -=== **4. Computational Workflow & Annotation Pipelines** ===
105 +== **AI-Driven Biomarker Categorization** ==
188 188  
189 -==== **Data Processing Steps** ====
107 +Neurodiagnoses employs **AI models** for biomarker classification:
190 190  
191 -**Data Ingestion:**
109 +|=**Model Type**|=**Application**
110 +|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases
111 +|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers
112 +|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data
192 192  
193 -* **Harmonized datasets** stored in **EBRAINS Bucket**.
194 -* **Preprocessing pipelines** clean and standardize data.
195 -
196 -**Feature Engineering:**
197 -
198 -* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**.
199 -
200 -**AI-Generated Annotations:**
201 -
202 -* **Automated tagging** of diagnostic features in **structured reports**.
203 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions.
204 -
205 -**Clinical Decision Support Integration:**
206 -
207 -* **AI-annotated findings** fed into **interactive dashboards**.
208 -* **Clinicians can adjust, validate, and modify annotations**.
209 -
210 210  ----
211 211  
212 -=== **5. Validation & Real-World Testing** ===
116 +== [[image:workflow neurodiagnoses.png]] ==
213 213  
214 -==== **Prospective Clinical Study** ====
118 +== **Collaboration & Partnerships** ==
215 215  
216 -* **Multi-center validation** of AI-based **annotations & risk stratifications**.
217 -* **Benchmarking against clinician-based diagnoses**.
218 -* **Real-world testing** of AI-powered **structured reporting**.
120 +=== **Partnering with Data Providers** ===
219 219  
220 -==== **Quality Assurance & Explainability** ====
122 +Neurodiagnoses seeks partnerships with data repositories to:
221 221  
222 -* **Annotations linked to structured knowledge graphs** for improved transparency.
223 -* **Interactive annotation editor** allows clinicians to validate AI outputs.
124 +* Enable **API-based data integration** for real-time processing.
125 +* Co-develop **harmonized AI-ready datasets** with standardized annotations.
126 +* Secure **funding opportunities** through joint grant applications.
224 224  
225 -----
128 +**Interested in Partnering?**
226 226  
227 -=== **6. Collaborative Development** ===
130 +* If you represent a **research consortium or database provider**, reach out to explore **data-sharing agreements**.
131 +* **Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]
228 228  
229 -The project is **open to contributions** from **researchers, clinicians, and developers**.
230 -
231 -**Key tools include:**
232 -
233 -* **Jupyter Notebooks**: For data analysis and pipeline development.
234 -** Example: **probabilistic imputation**
235 -* **Wiki Pages**: For documenting methods and results.
236 -* **Drive and Bucket**: For sharing code, data, and outputs.
237 -* **Collaboration with related projects**:
238 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment**
239 -
240 240  ----
241 241  
242 -=== **7. Tools and Technologies** ===
135 +== **Final Notes** ==
243 243  
244 -==== **Programming Languages:** ====
137 +Neurodiagnoses continuously expands its **data ecosystem** to support **AI-driven clinical decision-making**. Researchers and institutions are encouraged to **contribute new datasets and methodologies**.
245 245  
246 -* **Python** for AI and data processing.
139 +**For additional technical documentation**:
247 247  
248 -==== **Frameworks:** ====
141 +* **GitHub Repository**: [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]]
142 +* **EBRAINS Collaboration Page**: [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]]
249 249  
250 -* **TensorFlow** and **PyTorch** for machine learning.
251 -* **Flask** or **FastAPI** for backend services.
144 +**If you experience issues integrating data**, open a **GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**.
252 252  
253 -==== **Visualization:** ====
254 -
255 -* **Plotly** and **Matplotlib** for interactive and static visualizations.
256 -
257 -==== **EBRAINS Services:** ====
258 -
259 -* **Collaboratory Lab** for running Notebooks.
260 -* **Buckets** for storing large datasets.
261 -
262 262  ----
263 263  
264 -=== **Why This Matters** ===
265 -
266 -* The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.
267 -* It enables real-time tracking of disease progression across the three diagnostic axes.
268 -* It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.
148 +This **updated methodology** now incorporates [[https:~~/~~/github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/biomarker_ontology>>https://Neuromarker]] for standardized biomarker classification, enabling **cross-disease AI training** across neurodegenerative disorders.
workflow neurodiagnoses.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.manuelmenendez
Size
... ... @@ -1,0 +1,1 @@
1 +157.5 KB
Content