Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 14.1
edited by manuelmenendez
on 2025/02/09 09:58
on 2025/02/09 09:58
Change comment:
There is no comment for this version
To version 21.1
edited by manuelmenendez
on 2025/02/14 22:09
on 2025/02/14 22:09
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,268 +1,148 @@ 1 - ====**Overview**====1 +Here is the updated **Methodology** section for the EBRAINS Wiki, incorporating the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)** for **biomarker classification across all neurodegenerative diseases**. 2 2 3 -This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**. 4 - 5 -=== **Workflow** === 6 - 7 -1. ((( 8 -**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]** 9 - 10 -* Create a **GitHub repository** for AI scripts and models. 11 -* Use **GitHub Projects** to manage research milestones. 12 -))) 13 -1. ((( 14 -**We Use EBRAINS for Data & Collaboration** 15 - 16 -* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**. 17 -* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models. 18 -* Use **EBRAINS Wiki** for structured documentation and research discussion. 19 -))) 20 - 21 21 ---- 22 22 23 -== =**1. Data Integration** ===5 +== **Neurodiagnoses AI: Multimodal AI for Neurodiagnostic Predictions** == 24 24 25 -=== ** EBRAINS Medical InformaticsPlatform (MIP)**.===7 +=== **Project Overview** === 26 26 27 -Neurodiagnoses i ntegratesclinicaldata via theEBRAINSMedicalInformaticsPlatform (MIP)**.MIPfederatesdecentralizedclinical data,allowingNeurodiagnosestosecurely accessand processsensitive informationforAI-based diagnostics.9 +Neurodiagnoses AI implements **AI-driven diagnostic and prognostic models** for central nervous system (CNS) disorders, expanding the **Florey Dementia Index (FDI) methodology** to a broader set of neurological conditions. The approach integrates **multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics) and employs machine learning models to provide **explainable, real-time diagnostic insights**. This framework now incorporates **Neuromarker**, a **generalized biomarker ontology** that categorizes biomarkers across neurodegenerative diseases, enabling **standardized, cross-disease AI training**. 28 28 29 -== ==HowItWorks====11 +== **Neuromarker: Generalized Biomarker Ontology** == 30 30 13 +Neuromarker extends the **Common Alzheimer’s Disease Research Ontology (CADRO)** into a **cross-disease biomarker categorization framework** applicable to all neurodegenerative diseases (NDDs). It allows for **standardized classification, AI-based feature extraction, and multimodal integration**. 31 31 32 -1. ((( 33 -**Authentication & API Access:** 15 +=== **Core Biomarker Categories** === 34 34 35 -* Users must have an **EBRAINS account**. 36 -* Neurodiagnoses uses **secure API endpoints** to fetch clinical data (e.g., from the **Federation for Dementia**). 37 -))) 38 -1. ((( 39 -**Data Mapping & Harmonization:** 17 +The following ontology is used within **Neurodiagnoses AI** for biomarker categorization: 40 40 41 -* Retrieved data is **normalized** and converted to standard formats (.csv, .json). 42 -* Data from **multiple sources** is harmonized to ensure consistency for AI processing. 43 -))) 44 -1. ((( 45 -**Security & Compliance:** 19 +|=**Category**|=**Description** 20 +|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 21 +|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 22 +|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL 23 +|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 24 +|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 25 +|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 26 +|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 27 +|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 46 46 47 -* All data access is **logged and monitored**. 48 -* Data remains on **MIP servers** using **federated learning techniques** when possible. 49 -* Access is granted only after signing a **Data Usage Agreement (DUA)**. 50 -))) 51 - 52 -==== Implementation Steps ==== 53 - 54 - 55 -1. Clone the repository. 56 -1. Configure your **EBRAINS API credentials** in mip_integration.py. 57 -1. Run the script to **download and harmonize clinical data**. 58 -1. Process the data for **AI model training**. 59 - 60 -For more detailed instructions, please refer to the **[[MIP Documentation>>url:https://mip.ebrains.eu/]]**. 61 - 62 62 ---- 63 63 64 -== =DataProcessing& IntegrationwithClinica.Run ===31 +== **How to Use External Databases in Neurodiagnoses** == 65 65 66 -Neurodiagnoses nowsupportsClinica.Run**,anopen-sourceneuroimaging platformdesignedfor **multimodaldataprocessingandreproducibleneuroscience workflows**.33 +To enhance diagnostic accuracy, Neurodiagnoses AI integrates data from **multiple biomedical and neurological research databases**. Researchers can follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework. 67 67 68 -=== =HowItWorks ====35 +=== **Potential Data Sources** === 69 69 37 +Neurodiagnoses maintains an **updated list** of biomedical datasets relevant to neurodegenerative diseases: 70 70 71 -1. ((( 72 -**Neuroimaging Preprocessing:** 39 +* **ADNI**: Alzheimer's Disease Imaging & Biomarkers → [[ADNI>>url:https://adni.loni.usc.edu/]] 40 +* **PPMI**: Parkinson’s Disease Imaging & Biospecimens → [[PPMI>>url:https://www.ppmi-info.org/]] 41 +* **GP2**: Whole-Genome Sequencing for PD → [[GP2>>url:https://gp2.org/]] 42 +* **Enroll-HD**: Huntington’s Disease Clinical & Genetic Data → [[Enroll-HD>>url:https://www.enroll-hd.org/]] 43 +* **GAAIN**: Multi-Source Alzheimer’s Data Aggregation → [[GAAIN>>url:https://gaain.org/]] 44 +* **UK Biobank**: Population-Wide Genetic, Imaging & Health Records → [[UK Biobank>>url:https://www.ukbiobank.ac.uk/]] 45 +* **DPUK**: Dementia & Aging Data → [[DPUK>>url:https://www.dementiasplatform.uk/]] 46 +* **PRION Registry**: Prion Diseases Clinical & Genetic Data → [[PRION Registry>>url:https://prionregistry.org/]] 47 +* **DECIPHER**: Rare Genetic Disorder Genomic Variants → [[DECIPHER>>url:https://decipher.sanger.ac.uk/]] 73 73 74 -* MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines**. 75 -* Supports **longitudinal and cross-sectional analyses**. 76 -))) 77 -1. ((( 78 -**Automated Biomarker Extraction:** 79 - 80 -* Standardized extraction of **volumetric, metabolic, and functional biomarkers**. 81 -* Integration with machine learning models in Neurodiagnoses. 82 -))) 83 -1. ((( 84 -**Data Security & Compliance:** 85 - 86 -* Clinica.Run operates in **compliance with GDPR and HIPAA**. 87 -* Neuroimaging data remains **within the original storage environment**. 88 -))) 89 - 90 -==== Implementation Steps ==== 91 - 92 - 93 -1. Install **Clinica.Run** dependencies. 94 -1. Configure your **Clinica.Run pipeline** in clinica_run_config.json. 95 -1. Run the pipeline for **preprocessing and biomarker extraction**. 96 -1. Use processed neuroimaging data for **AI-driven diagnostics** in Neurodiagnoses. 97 - 98 -For further information, refer to **[[Clinica.Run Documentation>>url:https://clinica.run/]]**. 99 - 100 -==== ==== 101 - 102 -==== **Data Sources** ==== 103 - 104 -[[List of potential sources of databases>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 105 - 106 -**Biomedical Ontologies & Databases:** 107 - 108 -* **Human Phenotype Ontology (HPO)** for symptom annotation. 109 -* **Gene Ontology (GO)** for molecular and cellular processes. 110 - 111 -**Dimensionality Reduction and Interpretability:** 112 - 113 -* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 114 -* **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 115 - 116 -**Neuroimaging & EEG/MEG Data:** 117 - 118 -* **MRI volumetric measures** for brain atrophy tracking. 119 -* **EEG functional connectivity patterns** (AI-Mind). 120 - 121 -**Clinical & Biomarker Data:** 122 - 123 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 124 -* **Sleep monitoring and actigraphy data** (ADIS). 125 - 126 -**Federated Learning Integration:** 127 - 128 -* **Secure multi-center data harmonization** (PROMINENT). 129 - 130 130 ---- 131 131 132 -== ==**AnnotationSystemforMulti-Modal Data** ====51 +== **1. Register for Access** == 133 133 134 -To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will: 53 +* Each external database requires **individual registration and access approval**. 54 +* Ensure compliance with **ethical approvals and data usage agreements** before integrating datasets into Neurodiagnoses. 55 +* Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data. 135 135 136 -* **Assign standardized metadata tags** to diagnostic features. 137 -* **Provide contextual explanations** for AI-based classifications. 138 -* **Track temporal disease progression annotations** to identify long-term trends. 139 - 140 140 ---- 141 141 142 -== =**2.AI-BasedAnalysis** ===59 +== **2. Download & Prepare Data** == 143 143 144 -==== **Machine Learning & Deep Learning Models** ==== 61 +* Download datasets while adhering to **database usage policies**. 62 +* Ensure files meet **Neurodiagnoses format requirements**: 145 145 146 -**Risk Prediction Models:** 64 +|=**Data Type**|=**Accepted Formats** 65 +|**Tabular Data**|.csv, .tsv 66 +|**Neuroimaging**|.nii, .dcm 67 +|**Genomic Data**|.fasta, .vcf 68 +|**Clinical Metadata**|.json, .xml 147 147 148 -* **LETHE’s cognitive risk prediction model** integrated into the annotation framework. 70 +* **Mandatory Fields for Integration**: 71 +** **Subject ID**: Unique patient identifier 72 +** **Diagnosis**: Standardized disease classification 73 +** **Biomarkers**: CSF, plasma, or imaging biomarkers 74 +** **Genetic Data**: Whole-genome or exome sequencing 75 +** **Neuroimaging Metadata**: MRI/PET acquisition parameters 149 149 150 - **Biomarker Classification & Probabilistic Imputation:**77 +---- 151 151 152 - ***KNNImputer**and**Bayesianmodels**used forhandling**missing biomarker data**.79 +== **3. Upload Data to Neurodiagnoses** == 153 153 154 -** NeuroimagingFeatureExtraction:**81 +=== **Option 1: Upload to EBRAINS Bucket** === 155 155 156 -* **MRI & EEG data** annotated with **neuroanatomical feature labels**. 83 +* Location: **EBRAINS Neurodiagnoses Bucket** 84 +* Ensure **correct metadata tagging** before submission. 157 157 158 -=== =**AI-Powered AnnotationSystem** ====86 +=== **Option 2: Contribute via GitHub Repository** === 159 159 160 -* Uses**SHAP-basedinterpretabilitytools** toexplain model decisions.161 -* Generates**automatedclinicalannotations**instructuredreports.162 -* Linksfindingsto**standardizedmedical ontologies**(e.g., **SNOMED, HPO**).88 +* Location: **GitHub Data Repository** 89 +* Create a **new folder under /data/** and include a **dataset description**. 90 +* **For large datasets**, contact project administrators before uploading. 163 163 164 164 ---- 165 165 166 -== =**3.Diagnostic Framework& ClinicalDecisionSupport** ===94 +== **4. Integrate Data into AI Models** == 167 167 168 -==== **Tridimensional Diagnostic Axes** ==== 96 +* Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**. 97 +* **Standardize neuroimaging and biomarker formats** using harmonization tools. 98 +* Use **machine learning models** to handle **missing data** and **feature extraction**. 99 +* Train AI models with **newly integrated patient cohorts**. 169 169 170 -** Axis 1:Etiology(PathogenicMechanisms)**101 +**Reference**: See docs/data_processing.md for detailed instructions. 171 171 172 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 173 -* **AI-assisted annotation** provides **causal interpretations** for clinical use. 174 - 175 -**Axis 2: Molecular Markers & Biomarkers** 176 - 177 -* **Integration of CSF, blood, and neuroimaging biomarkers**. 178 -* **Structured annotation** highlights **biological pathways linked to diagnosis**. 179 - 180 -**Axis 3: Neuroanatomoclinical Correlations** 181 - 182 -* **MRI and EEG data** provide anatomical and functional insights. 183 -* **AI-generated progression maps** annotate **brain structure-function relationships**. 184 - 185 185 ---- 186 186 187 -== =**4. ComputationalWorkflow& AnnotationPipelines** ===105 +== **AI-Driven Biomarker Categorization** == 188 188 189 - ==== **Data ProcessingSteps**====107 +Neurodiagnoses employs **AI models** for biomarker classification: 190 190 191 -**Data Ingestion:** 109 +|=**Model Type**|=**Application** 110 +|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 111 +|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 112 +|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 192 192 193 -* **Harmonized datasets** stored in **EBRAINS Bucket**. 194 -* **Preprocessing pipelines** clean and standardize data. 195 - 196 -**Feature Engineering:** 197 - 198 -* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. 199 - 200 -**AI-Generated Annotations:** 201 - 202 -* **Automated tagging** of diagnostic features in **structured reports**. 203 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 204 - 205 -**Clinical Decision Support Integration:** 206 - 207 -* **AI-annotated findings** fed into **interactive dashboards**. 208 -* **Clinicians can adjust, validate, and modify annotations**. 209 - 210 210 ---- 211 211 212 -== =**5. Validation & Real-WorldTesting**===116 +== [[image:workflow neurodiagnoses.png]] == 213 213 214 -== ==**Prospective ClinicalStudy** ====118 +== **Collaboration & Partnerships** == 215 215 216 -* **Multi-center validation** of AI-based **annotations & risk stratifications**. 217 -* **Benchmarking against clinician-based diagnoses**. 218 -* **Real-world testing** of AI-powered **structured reporting**. 120 +=== **Partnering with Data Providers** === 219 219 220 - ==== **QualityAssurance&Explainability**====122 +Neurodiagnoses seeks partnerships with data repositories to: 221 221 222 -* **Annotations linked to structured knowledge graphs** for improved transparency. 223 -* **Interactive annotation editor** allows clinicians to validate AI outputs. 124 +* Enable **API-based data integration** for real-time processing. 125 +* Co-develop **harmonized AI-ready datasets** with standardized annotations. 126 +* Secure **funding opportunities** through joint grant applications. 224 224 225 - ----128 +**Interested in Partnering?** 226 226 227 -=== **6. Collaborative Development** === 130 +* If you represent a **research consortium or database provider**, reach out to explore **data-sharing agreements**. 131 +* **Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 228 228 229 -The project is **open to contributions** from **researchers, clinicians, and developers**. 230 - 231 -**Key tools include:** 232 - 233 -* **Jupyter Notebooks**: For data analysis and pipeline development. 234 -** Example: **probabilistic imputation** 235 -* **Wiki Pages**: For documenting methods and results. 236 -* **Drive and Bucket**: For sharing code, data, and outputs. 237 -* **Collaboration with related projects**: 238 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 239 - 240 240 ---- 241 241 242 -== =**7. Toolsand Technologies** ===135 +== **Final Notes** == 243 243 244 - ====**ProgrammingLanguages:**====137 +Neurodiagnoses continuously expands its **data ecosystem** to support **AI-driven clinical decision-making**. Researchers and institutions are encouraged to **contribute new datasets and methodologies**. 245 245 246 -* *Python** forAIandprocessing.139 +**For additional technical documentation**: 247 247 248 -==== **Frameworks:** ==== 141 +* **GitHub Repository**: [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]] 142 +* **EBRAINS Collaboration Page**: [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]] 249 249 250 -* **TensorFlow** and **PyTorch** for machine learning. 251 -* **Flask** or **FastAPI** for backend services. 144 +**If you experience issues integrating data**, open a **GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**. 252 252 253 -==== **Visualization:** ==== 254 - 255 -* **Plotly** and **Matplotlib** for interactive and static visualizations. 256 - 257 -==== **EBRAINS Services:** ==== 258 - 259 -* **Collaboratory Lab** for running Notebooks. 260 -* **Buckets** for storing large datasets. 261 - 262 262 ---- 263 263 264 -=== **Why This Matters** === 265 - 266 -* The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful. 267 -* It enables real-time tracking of disease progression across the three diagnostic axes. 268 -* It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows. 148 +This **updated methodology** now incorporates [[https:~~/~~/github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/biomarker_ontology>>https://Neuromarker]] for standardized biomarker classification, enabling **cross-disease AI training** across neurodegenerative disorders.
- workflow neurodiagnoses.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.manuelmenendez - Size
-
... ... @@ -1,0 +1,1 @@ 1 +157.5 KB - Content