Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 15.1
edited by manuelmenendez
on 2025/02/09 10:08
on 2025/02/09 10:08
Change comment:
There is no comment for this version
To version 17.1
edited by manuelmenendez
on 2025/02/09 13:01
on 2025/02/09 13:01
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,268 +1,154 @@ 1 1 == **Overview** == 2 2 3 - This projectdevelops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**.The methodology integrates**multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**.3 +Neurodiagnoses develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility.** 4 4 5 -== **Workflow** == 5 +This methodology integrates **multi-modal data**, including: 6 +**Genetic data** (whole-genome sequencing, polygenic risk scores). 7 +**Neuroimaging** (MRI, PET, EEG, MEG). 8 +**Neurophysiological data** (EEG-based biomarkers, sleep actigraphy). 9 +**CSF & Blood Biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 6 6 7 -1. ((( 8 -**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]** 11 +By applying **machine learning models**, Neurodiagnoses generates **structured, explainable diagnostic outputs** to assist **clinical decision-making** and **biomarker-driven patient stratification.** 9 9 10 -* Create a **GitHub repository** for AI scripts and models. 11 -* Use **GitHub Projects** to manage research milestones. 12 -))) 13 -1. ((( 14 -**We Use EBRAINS for Data & Collaboration** 15 - 16 -* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**. 17 -* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models. 18 -* Use **EBRAINS Wiki** for structured documentation and research discussion. 19 -))) 20 - 21 21 ---- 22 22 23 -== ** 1.Data Integration** ==15 +== **Data Integration & External Databases** == 24 24 25 -=== ** EBRAINSMedicalInformaticsPlatform (MIP)**.===17 +=== **How to Use External Databases in Neurodiagnoses** === 26 26 27 -Neurodiagnoses integrates clinicaldataviatheEBRAINS MedicalInformatics Platform(MIP)**. MIP federatesdecentralizedclinicaldata, allowingNeurodiagnoses tosecurelyaccessandprocess sensitiveinformationforAI-baseddiagnostics.19 +Neurodiagnoses integrates data from multiple **biomedical and neurological research databases**. Researchers can follow these steps to **access, prepare, and integrate** data into the Neurodiagnoses framework. 28 28 29 -==== How It Works ==== 21 +**Potential Data Sources** 22 +**Reference:** [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 30 30 24 +=== **Register for Access** === 31 31 32 -1. ((( 33 -**Authentication & API Access:** 26 +Each **external database** requires **individual registration** and approval. 27 +✔️ Follow the official **data access guidelines** of each provider. 28 +✔️ Ensure compliance with **ethical approvals** and **data-sharing agreements (DUAs).** 34 34 35 -* Users must have an **EBRAINS account**. 36 -* Neurodiagnoses uses **secure API endpoints** to fetch clinical data (e.g., from the **Federation for Dementia**). 37 -))) 38 -1. ((( 39 -**Data Mapping & Harmonization:** 30 +=== **Download & Prepare Data** === 40 40 41 -* Retrieved data is **normalized** and converted to standard formats (.csv, .json). 42 -* Data from **multiple sources** is harmonized to ensure consistency for AI processing. 43 -))) 44 -1. ((( 45 -**Security & Compliance:** 32 +Once access is granted, download datasets **following compliance guidelines** and **format requirements** for integration. 46 46 47 -* All data access is **logged and monitored**. 48 -* Data remains on **MIP servers** using **federated learning techniques** when possible. 49 -* Access is granted only after signing a **Data Usage Agreement (DUA)**. 50 -))) 34 +**Supported File Formats** 51 51 52 -==== Implementation Steps ==== 36 +* **Tabular Data**: .csv, .tsv 37 +* **Neuroimaging Data**: .nii, .dcm 38 +* **Genomic Data**: .fasta, .vcf 39 +* **Clinical Metadata**: .json, .xml 53 53 41 +**Mandatory Fields for Integration** 54 54 55 -1. Clone the repository. 56 -1. Configure your **EBRAINS API credentials** in mip_integration.py. 57 -1. Run the script to **download and harmonize clinical data**. 58 -1. Process the data for **AI model training**. 43 +|=**Field Name**|=**Description** 44 +|**Subject ID**|Unique patient identifier 45 +|**Diagnosis**|Standardized disease classification 46 +|**Biomarkers**|CSF, plasma, or imaging biomarkers 47 +|**Genetic Data**|Whole-genome or exome sequencing 48 +|**Neuroimaging Metadata**|MRI/PET acquisition parameters 59 59 60 - Formore detailedinstructions, pleaserefertothe**[[MIP Documentation>>url:https://mip.ebrains.eu/]]**.50 +=== **Upload Data to Neurodiagnoses** === 61 61 62 ----- 52 +**Option 1:** Upload to **EBRAINS Bucket** → [[Neurodiagnoses Data Storage>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]] 53 +**Option 2:** Contribute via **GitHub Repository** → [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]] 63 63 64 - ===DataProcessing&IntegrationwithClinica.Run ===55 +**For large datasets, please contact project administrators before uploading.** 65 65 66 - Neurodiagnosesnow supports**Clinica.Run**, an open-source neuroimaging platform designedfor **multimodal dataprocessingandreproducibleneuroscience workflows**.57 +=== **Integrate Data into AI Models** === 67 67 68 -==== How It Works ==== 59 +Use **Jupyter Notebooks** on EBRAINS for **data preprocessing.** 60 +Standardize data using **harmonization tools.** 61 +Train AI models with **newly integrated datasets.** 69 69 63 +**Reference:** [[Data Processing Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]] 70 70 71 -1. ((( 72 -**Neuroimaging Preprocessing:** 65 +---- 73 73 74 -* MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines**. 75 -* Supports **longitudinal and cross-sectional analyses**. 76 -))) 77 -1. ((( 78 -**Automated Biomarker Extraction:** 67 +== **AI-Powered Annotation & Machine Learning Models** == 79 79 80 -* Standardized extraction of **volumetric, metabolic, and functional biomarkers**. 81 -* Integration with machine learning models in Neurodiagnoses. 82 -))) 83 -1. ((( 84 -**Data Security & Compliance:** 69 +Neurodiagnoses applies **advanced machine learning models** to classify CNS diseases, extract features from **biomarkers and neuroimaging**, and provide **AI-powered annotation.** 85 85 86 -* Clinica.Run operates in **compliance with GDPR and HIPAA**. 87 -* Neuroimaging data remains **within the original storage environment**. 88 -))) 71 +=== **AI Model Categories** === 89 89 90 -==== Implementation Steps ==== 73 +|=**Model Type**|=**Function**|=**Example Algorithms** 74 +|**Probabilistic Diagnosis**|Assigns probability scores to multiple CNS disorders.|Random Forest, XGBoost, Bayesian Networks 75 +|**Tridimensional Diagnosis**|Classifies disorders based on Etiology, Biomarkers, and Neuroanatomical Correlations.|CNNs, Transformers, Autoencoders 76 +|**Biomarker Prediction**|Predicts missing biomarker values using regression.|KNN Imputation, Bayesian Estimation 77 +|**Neuroimaging Feature Extraction**|Extracts patterns from MRI, PET, EEG.|CNNs, Graph Neural Networks 78 +|**Clinical Decision Support**|Generates AI-driven diagnostic reports.|SHAP Explainability Tools 91 91 80 +**Reference:** [[AI Model Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/models.md]] 92 92 93 -1. Install **Clinica.Run** dependencies. 94 -1. Configure your **Clinica.Run pipeline** in clinica_run_config.json. 95 -1. Run the pipeline for **preprocessing and biomarker extraction**. 96 -1. Use processed neuroimaging data for **AI-driven diagnostics** in Neurodiagnoses. 97 - 98 -For further information, refer to **[[Clinica.Run Documentation>>url:https://clinica.run/]]**. 99 - 100 -==== ==== 101 - 102 -==== **Data Sources** ==== 103 - 104 -[[List of potential sources of databases>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 105 - 106 -**Biomedical Ontologies & Databases:** 107 - 108 -* **Human Phenotype Ontology (HPO)** for symptom annotation. 109 -* **Gene Ontology (GO)** for molecular and cellular processes. 110 - 111 -**Dimensionality Reduction and Interpretability:** 112 - 113 -* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 114 -* **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 115 - 116 -**Neuroimaging & EEG/MEG Data:** 117 - 118 -* **MRI volumetric measures** for brain atrophy tracking. 119 -* **EEG functional connectivity patterns** (AI-Mind). 120 - 121 -**Clinical & Biomarker Data:** 122 - 123 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 124 -* **Sleep monitoring and actigraphy data** (ADIS). 125 - 126 -**Federated Learning Integration:** 127 - 128 -* **Secure multi-center data harmonization** (PROMINENT). 129 - 130 130 ---- 131 131 132 -== ==**Annotation System forMulti-Modal Data** ====84 +== **Clinical Decision Support & Tridimensional Diagnostic Framework** == 133 133 134 - To ensure **structuredintegrationof diversedatasets**,**Neurodiagnoses**willimplement an **AI-drivenannotationsystem**,which will:86 +Neurodiagnoses generates **structured AI reports** for clinicians, combining: 135 135 136 -* **Assign standardized metadata tags** to diagnostic features. 137 -* **Provide contextual explanations** for AI-based classifications. 138 -* **Track temporal disease progression annotations** to identify long-term trends. 88 +**Probabilistic Diagnosis:** AI-generated ranking of potential diagnoses. 89 +**Tridimensional Classification:** Standardized diagnostic reports based on: 139 139 140 ----- 91 +1. **Axis 1:** **Etiology** → Genetic, Autoimmune, Prion, Toxic, Vascular. 92 +1. **Axis 2:** **Molecular Markers** → CSF, Neuroinflammation, EEG biomarkers. 93 +1. **Axis 3:** **Neuroanatomoclinical Correlations** → MRI atrophy, PET. 141 141 142 - ==**2.AI-BasedAnalysis** ==95 +**Reference:** [[Tridimensional Classification Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/classification.md]] 143 143 144 -==== **Machine Learning & Deep Learning Models** ==== 145 - 146 -**Risk Prediction Models:** 147 - 148 -* **LETHE’s cognitive risk prediction model** integrated into the annotation framework. 149 - 150 -**Biomarker Classification & Probabilistic Imputation:** 151 - 152 -* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. 153 - 154 -**Neuroimaging Feature Extraction:** 155 - 156 -* **MRI & EEG data** annotated with **neuroanatomical feature labels**. 157 - 158 -==== **AI-Powered Annotation System** ==== 159 - 160 -* Uses **SHAP-based interpretability tools** to explain model decisions. 161 -* Generates **automated clinical annotations** in structured reports. 162 -* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). 163 - 164 164 ---- 165 165 166 -== ** 3.Diagnostic Framework&ClinicalDecisionSupport** ==99 +== **Data Security, Compliance & Federated Learning** == 167 167 168 -==== **Tridimensional Diagnostic Axes** ==== 101 +✔ **Privacy-Preserving AI**: Implements **Federated Learning**, ensuring that patient data **never leaves** local institutions. 102 +✔ **Secure Data Access**: Data remains **stored in EBRAINS MIP servers** using **differential privacy techniques.** 103 +✔ **Ethical & GDPR Compliance**: Data-sharing agreements **must be signed** before use. 169 169 170 -** Axis 1:Etiology(PathogenicMechanisms)**105 +**Reference:** [[Data Protection & Federated Learning>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/security.md]] 171 171 172 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 173 -* **AI-assisted annotation** provides **causal interpretations** for clinical use. 174 - 175 -**Axis 2: Molecular Markers & Biomarkers** 176 - 177 -* **Integration of CSF, blood, and neuroimaging biomarkers**. 178 -* **Structured annotation** highlights **biological pathways linked to diagnosis**. 179 - 180 -**Axis 3: Neuroanatomoclinical Correlations** 181 - 182 -* **MRI and EEG data** provide anatomical and functional insights. 183 -* **AI-generated progression maps** annotate **brain structure-function relationships**. 184 - 185 185 ---- 186 186 187 -== ** 4. ComputationalWorkflow&AnnotationPipelines** ==109 +== **Data Processing & Integration with Clinica.Run** == 188 188 189 - ====**DataProcessingSteps**====111 +Neurodiagnoses now supports **Clinica.Run**, an **open-source neuroimaging platform** for **multimodal data processing.** 190 190 191 -** DataIngestion:**113 +=== **How It Works** === 192 192 193 -* **Harmonized datasets** stored in **EBRAINS Bucket**. 194 -* **Preprocessing pipelines** clean and standardize data. 115 +✔ **Neuroimaging Preprocessing**: MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines.** 116 +✔ **Automated Biomarker Extraction**: Extracts volumetric, metabolic, and functional biomarkers. 117 +✔ **Data Security & Compliance**: Clinica.Run is **GDPR & HIPAA-compliant.** 195 195 196 -** FeatureEngineering:**119 +=== **Implementation Steps** === 197 197 198 -* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. 121 +1. Install **Clinica.Run** dependencies. 122 +1. Configure **Clinica.Run pipeline** in clinica_run_config.json. 123 +1. Run **biomarker extraction pipelines** for AI-based diagnostics. 199 199 200 -** AI-GeneratedAnnotations:**125 +**Reference:** [[Clinica.Run Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/clinica_run.md]] 201 201 202 -* **Automated tagging** of diagnostic features in **structured reports**. 203 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 204 - 205 -**Clinical Decision Support Integration:** 206 - 207 -* **AI-annotated findings** fed into **interactive dashboards**. 208 -* **Clinicians can adjust, validate, and modify annotations**. 209 - 210 210 ---- 211 211 212 -== ** 5. Validation & Real-World Testing** ==129 +== **Collaborative Development & Research** == 213 213 214 - ====**ProspectiveClinicalStudy**====131 +**We Use GitHub to Develop AI Models & Store Research Data** 215 215 216 -* ** Multi-centervalidation**ofAI-based**annotations & riskstratifications**.217 -* ** Benchmarkingagainstclinician-baseddiagnoses**.218 -* ** Real-worldtesting** of AI-powered **structuredreporting**.133 +* **GitHub Repository:** AI model training scripts. 134 +* **GitHub Issues:** Tracks ongoing research questions. 135 +* **GitHub Wiki:** Project documentation & user guides. 219 219 220 - ====**QualityAssurance&Explainability**====137 +**We Use EBRAINS for Data & Collaboration** 221 221 222 -* **Annotations linked to structured knowledge graphs** for improved transparency. 223 -* **Interactive annotation editor** allows clinicians to validate AI outputs. 139 +* **EBRAINS Buckets:** Large-scale neuroimaging and biomarker storage. 140 +* **EBRAINS Jupyter Notebooks:** Cloud-based AI model execution. 141 +* **EBRAINS Wiki:** Research documentation and updates. 224 224 225 --- --143 +**Join the Project Forum:** [[GitHub Discussions>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]] 226 226 227 -== **6. Collaborative Development** == 228 - 229 -The project is **open to contributions** from **researchers, clinicians, and developers**. 230 - 231 -**Key tools include:** 232 - 233 -* **Jupyter Notebooks**: For data analysis and pipeline development. 234 -** Example: **probabilistic imputation** 235 -* **Wiki Pages**: For documenting methods and results. 236 -* **Drive and Bucket**: For sharing code, data, and outputs. 237 -* **Collaboration with related projects**: 238 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 239 - 240 240 ---- 241 241 242 - ==**7. ToolsandTechnologies**==147 +**For Additional Documentation:** 243 243 244 -==== **Programming Languages:** ==== 149 +* **GitHub Repository:** [[Neurodiagnoses AI Models>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]] 150 +* **EBRAINS Wiki:** [[Neurodiagnoses Research Collaboration>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]] 245 245 246 -* **Python** for AI and data processing. 247 - 248 -==== **Frameworks:** ==== 249 - 250 -* **TensorFlow** and **PyTorch** for machine learning. 251 -* **Flask** or **FastAPI** for backend services. 252 - 253 -==== **Visualization:** ==== 254 - 255 -* **Plotly** and **Matplotlib** for interactive and static visualizations. 256 - 257 -==== **EBRAINS Services:** ==== 258 - 259 -* **Collaboratory Lab** for running Notebooks. 260 -* **Buckets** for storing large datasets. 261 - 262 262 ---- 263 263 264 -=== **Why This Matters** === 265 - 266 -* The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful. 267 -* It enables real-time tracking of disease progression across the three diagnostic axes. 268 -* It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows. 154 +**Neurodiagnoses is Open for Contributions – Join Us Today!**