Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 15.1
edited by manuelmenendez
on 2025/02/09 10:08
on 2025/02/09 10:08
Change comment:
There is no comment for this version
To version 4.2
edited by manuelmenendez
on 2025/01/29 19:10
on 2025/01/29 19:10
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,268 +1,109 @@ 1 -== **Overview** == 1 +=== **Overview** === 2 2 3 -This project developsa**tridimensionaldiagnosticframework**for**CNSdiseases**,incorporating **AI-powered annotationtools**toimprove**interpretability,standardization,andclinicalutility**. The methodology integrates**multi-modaldata**,including**genetic,neuroimaging,neurophysiological, andbiomarker datasets**, andapplies**machinelearning models**togenerate**structured, explainable diagnosticoutputs**.3 +This section describes the step-by-step process used in the **Neurodiagnoses** project to develop a novel diagnostic framework for neurological diseases. The methodology integrates artificial intelligence (AI), biomedical ontologies, and computational neuroscience to create a structured, interpretable, and scalable diagnostic system. 4 4 5 -== **Workflow** == 6 - 7 -1. ((( 8 -**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]** 9 - 10 -* Create a **GitHub repository** for AI scripts and models. 11 -* Use **GitHub Projects** to manage research milestones. 12 -))) 13 -1. ((( 14 -**We Use EBRAINS for Data & Collaboration** 15 - 16 -* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**. 17 -* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models. 18 -* Use **EBRAINS Wiki** for structured documentation and research discussion. 19 -))) 20 - 21 21 ---- 22 22 23 -== **1. Data Integration** == 7 +=== **1. Data Integration** === 24 24 25 -=== **EBRAINS Medical Informatics Platform (MIP)**. === 26 - 27 -Neurodiagnoses integrates clinical data via the **EBRAINS Medical Informatics Platform (MIP)**. MIP federates decentralized clinical data, allowing Neurodiagnoses to securely access and process sensitive information for AI-based diagnostics. 28 - 29 -==== How It Works ==== 30 - 31 - 32 -1. ((( 33 -**Authentication & API Access:** 34 - 35 -* Users must have an **EBRAINS account**. 36 -* Neurodiagnoses uses **secure API endpoints** to fetch clinical data (e.g., from the **Federation for Dementia**). 37 -))) 38 -1. ((( 39 -**Data Mapping & Harmonization:** 40 - 41 -* Retrieved data is **normalized** and converted to standard formats (.csv, .json). 42 -* Data from **multiple sources** is harmonized to ensure consistency for AI processing. 43 -))) 44 -1. ((( 45 -**Security & Compliance:** 46 - 47 -* All data access is **logged and monitored**. 48 -* Data remains on **MIP servers** using **federated learning techniques** when possible. 49 -* Access is granted only after signing a **Data Usage Agreement (DUA)**. 50 -))) 51 - 52 -==== Implementation Steps ==== 53 - 54 - 55 -1. Clone the repository. 56 -1. Configure your **EBRAINS API credentials** in mip_integration.py. 57 -1. Run the script to **download and harmonize clinical data**. 58 -1. Process the data for **AI model training**. 59 - 60 -For more detailed instructions, please refer to the **[[MIP Documentation>>url:https://mip.ebrains.eu/]]**. 61 - 62 ----- 63 - 64 -=== Data Processing & Integration with Clinica.Run === 65 - 66 -Neurodiagnoses now supports **Clinica.Run**, an open-source neuroimaging platform designed for **multimodal data processing and reproducible neuroscience workflows**. 67 - 68 -==== How It Works ==== 69 - 70 - 71 -1. ((( 72 -**Neuroimaging Preprocessing:** 73 - 74 -* MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines**. 75 -* Supports **longitudinal and cross-sectional analyses**. 76 -))) 77 -1. ((( 78 -**Automated Biomarker Extraction:** 79 - 80 -* Standardized extraction of **volumetric, metabolic, and functional biomarkers**. 81 -* Integration with machine learning models in Neurodiagnoses. 82 -))) 83 -1. ((( 84 -**Data Security & Compliance:** 85 - 86 -* Clinica.Run operates in **compliance with GDPR and HIPAA**. 87 -* Neuroimaging data remains **within the original storage environment**. 88 -))) 89 - 90 -==== Implementation Steps ==== 91 - 92 - 93 -1. Install **Clinica.Run** dependencies. 94 -1. Configure your **Clinica.Run pipeline** in clinica_run_config.json. 95 -1. Run the pipeline for **preprocessing and biomarker extraction**. 96 -1. Use processed neuroimaging data for **AI-driven diagnostics** in Neurodiagnoses. 97 - 98 -For further information, refer to **[[Clinica.Run Documentation>>url:https://clinica.run/]]**. 99 - 100 -==== ==== 101 - 102 102 ==== **Data Sources** ==== 103 103 104 -[[List of potential sources of databases>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 11 +* **Biomedical Ontologies**: 12 +** Human Phenotype Ontology (HPO) for phenotypic abnormalities. 13 +** Gene Ontology (GO) for molecular and cellular processes. 14 +* **Neuroimaging Datasets**: 15 +** Example: Alzheimer’s Disease Neuroimaging Initiative (ADNI), OpenNeuro. 16 +* **Clinical and Biomarker Data**: 17 +** Anonymized clinical reports, molecular biomarkers, and test results. 105 105 106 -**Biomedical Ontologies & Databases:** 107 107 108 -* **Human Phenotype Ontology (HPO)** for symptom annotation. 109 -* **Gene Ontology (GO)** for molecular and cellular processes. 20 +==== **Data Preprocessing** ==== 110 110 111 -**Dimensionality Reduction and Interpretability:** 22 +1. **Standardization**: Ensure all data sources are normalized to a common format. 23 +1. **Feature Selection**: Identify relevant features for diagnosis (e.g., biomarkers, imaging scores). 24 +1. **Data Cleaning**: Handle missing values and remove duplicates. 112 112 113 -* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 114 -* **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 115 - 116 -**Neuroimaging & EEG/MEG Data:** 117 - 118 -* **MRI volumetric measures** for brain atrophy tracking. 119 -* **EEG functional connectivity patterns** (AI-Mind). 120 - 121 -**Clinical & Biomarker Data:** 122 - 123 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 124 -* **Sleep monitoring and actigraphy data** (ADIS). 125 - 126 -**Federated Learning Integration:** 127 - 128 -* **Secure multi-center data harmonization** (PROMINENT). 129 - 130 130 ---- 131 131 132 -=== =**Annotation System for Multi-ModalData** ====28 +=== **2. AI-Based Analysis** === 133 133 134 - Toensure**structured integration ofdiversedatasets**, **Neurodiagnoses** will implementan**AI-drivenannotation system**, which will:30 +==== **Model Development** ==== 135 135 136 -* **Assign standardized metadata tags** to diagnostic features. 137 -* **Provide contextual explanations** for AI-based classifications. 138 -* **Track temporal disease progression annotations** to identify long-term trends. 32 +* **Embedding Models**: Use pre-trained models like BioBERT or BioLORD for text data. 33 +* **Classification Models**: 34 +** Algorithms: Random Forest, Support Vector Machines (SVM), or neural networks. 35 +** Purpose: Predict the likelihood of specific neurological conditions based on input data. 139 139 140 - ----37 +==== **Dimensionality Reduction and Interpretability** ==== 141 141 142 -== **2. AI-Based Analysis** == 39 +* Leverage [[DEIBO>>https://drive.ebrains.eu/f/8d7157708cde4b258db0/]] (Data-driven Embedding Interpretation Based on Ontologies) to connect model dimensions to ontology concepts. 40 +* Evaluate interpretability using metrics like the Area Under the Interpretability Curve (AUIC). 143 143 144 -==== **Machine Learning & Deep Learning Models** ==== 145 - 146 -**Risk Prediction Models:** 147 - 148 -* **LETHE’s cognitive risk prediction model** integrated into the annotation framework. 149 - 150 -**Biomarker Classification & Probabilistic Imputation:** 151 - 152 -* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. 153 - 154 -**Neuroimaging Feature Extraction:** 155 - 156 -* **MRI & EEG data** annotated with **neuroanatomical feature labels**. 157 - 158 -==== **AI-Powered Annotation System** ==== 159 - 160 -* Uses **SHAP-based interpretability tools** to explain model decisions. 161 -* Generates **automated clinical annotations** in structured reports. 162 -* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). 163 - 164 164 ---- 165 165 166 -== **3. Diagnostic Framework & Clinical Decision Support** ==44 +=== **3. Diagnostic Framework** === 167 167 168 -==== ** TridimensionalDiagnostic Axes** ====46 +==== **Axes of Diagnosis** ==== 169 169 170 - **Axis1:Etiology(PathogenicMechanisms)**48 +The framework organizes diagnostic data into three axes: 171 171 172 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 173 -* **AI-assisted annotation** provides **causal interpretations** for clinical use. 50 +1. **Etiology**: Genetic and environmental risk factors. 51 +1. **Molecular Markers**: Biomarkers such as amyloid-beta, tau, and alpha-synuclein. 52 +1. **Neuroanatomical Correlations**: Results from neuroimaging (e.g., MRI, PET). 174 174 175 -** Axis 2: Molecular Markers & Biomarkers**54 +==== **Recommendation System** ==== 176 176 177 -* **Integrationof CSF, blood,and neuroimagingbiomarkers**.178 -* **Structured annotation** highlights**biological pathwayslinkedtodiagnosis**.56 +* Suggests additional tests or biomarkers if gaps are detected in the data. 57 +* Prioritizes tests based on clinical impact and cost-effectiveness. 179 179 180 -**Axis 3: Neuroanatomoclinical Correlations** 181 - 182 -* **MRI and EEG data** provide anatomical and functional insights. 183 -* **AI-generated progression maps** annotate **brain structure-function relationships**. 184 - 185 185 ---- 186 186 187 -== **4. Computational Workflow & Annotation Pipelines** ==61 +=== **4. Computational Workflow** === 188 188 189 -==== **Data Processing Steps** ==== 63 +1. **Data Loading**: Import data from storage (Drive or Bucket). 64 +1. **Feature Engineering**: Generate derived features from the raw data. 65 +1. **Model Training**: 66 +1*. Split data into training, validation, and test sets. 67 +1*. Train models with cross-validation to ensure robustness. 68 +1. **Evaluation**: 69 +1*. Metrics: Accuracy, F1-Score, AUIC for interpretability. 70 +1*. Compare against baseline models and domain benchmarks. 190 190 191 -**Data Ingestion:** 192 - 193 -* **Harmonized datasets** stored in **EBRAINS Bucket**. 194 -* **Preprocessing pipelines** clean and standardize data. 195 - 196 -**Feature Engineering:** 197 - 198 -* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. 199 - 200 -**AI-Generated Annotations:** 201 - 202 -* **Automated tagging** of diagnostic features in **structured reports**. 203 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 204 - 205 -**Clinical Decision Support Integration:** 206 - 207 -* **AI-annotated findings** fed into **interactive dashboards**. 208 -* **Clinicians can adjust, validate, and modify annotations**. 209 - 210 210 ---- 211 211 212 -== **5. Validation & Real-World Testing** ==74 +=== **5. Validation** === 213 213 214 -==== ** ProspectiveClinicalStudy** ====76 +==== **Internal Validation** ==== 215 215 216 -* **Multi-center validation** of AI-based **annotations & risk stratifications**. 217 -* **Benchmarking against clinician-based diagnoses**. 218 -* **Real-world testing** of AI-powered **structured reporting**. 78 +* Test the system using simulated datasets and known clinical cases. 79 +* Fine-tune models based on validation results. 219 219 220 -==== ** Quality Assurance & Explainability** ====81 +==== **External Validation** ==== 221 221 222 -* **Annotationslinked to structuredknowledgegraphs** forimprovedtransparency.223 -* **Interactive annotationeditor**allowsclinicianstovalidateAI outputs.83 +* Collaborate with research institutions and hospitals to test the system in real-world settings. 84 +* Use anonymized patient data to ensure privacy compliance. 224 224 225 225 ---- 226 226 227 -== **6. Collaborative Development** == 88 +=== **6. Collaborative Development** === 228 228 229 -The project is **open to contributions**from**researchers, clinicians, and developers**.90 +The project is open to contributions from researchers, clinicians, and developers. Key tools include: 230 230 231 -**Key tools include:** 232 - 233 233 * **Jupyter Notebooks**: For data analysis and pipeline development. 234 -** Example: **probabilistic imputation**93 +** Example: [[probabilistic imputation>>https://drive.ebrains.eu/f/4f69ab52f7734ef48217/]] 235 235 * **Wiki Pages**: For documenting methods and results. 236 236 * **Drive and Bucket**: For sharing code, data, and outputs. 237 -* **Collaboration with related projects**: 238 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 96 +* **Related projects: **For instance: [[//Beyond the hype: AI in dementia – from early risk detection to disease treatment//>>https://www.lethe-project.eu/beyond-the-hype-ai-in-dementia-from-early-risk-detection-to-disease-treatment/]] 239 239 240 240 ---- 241 241 242 -== **7. Tools and Technologies** == 100 +=== **7. Tools and Technologies** === 243 243 244 -==== **Programming Languages:** ==== 245 - 246 -* **Python** for AI and data processing. 247 - 248 -==== **Frameworks:** ==== 249 - 250 -* **TensorFlow** and **PyTorch** for machine learning. 251 -* **Flask** or **FastAPI** for backend services. 252 - 253 -==== **Visualization:** ==== 254 - 255 -* **Plotly** and **Matplotlib** for interactive and static visualizations. 256 - 257 -==== **EBRAINS Services:** ==== 258 - 259 -* **Collaboratory Lab** for running Notebooks. 260 -* **Buckets** for storing large datasets. 261 - 262 ----- 263 - 264 -=== **Why This Matters** === 265 - 266 -* The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful. 267 -* It enables real-time tracking of disease progression across the three diagnostic axes. 268 -* It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows. 102 +* **Programming Languages**: Python for AI and data processing. 103 +* **Frameworks**: 104 +** TensorFlow and PyTorch for machine learning. 105 +** Flask or FastAPI for backend services. 106 +* **Visualization**: Plotly and Matplotlib for interactive and static visualizations. 107 +* **EBRAINS Services**: 108 +** Collaboratory Lab for running Notebooks. 109 +** Buckets for storing large datasets.