Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 16.1
edited by manuelmenendez
on 2025/02/09 10:08
on 2025/02/09 10:08
Change comment:
There is no comment for this version
To version 22.1
edited by manuelmenendez
on 2025/02/15 12:55
on 2025/02/15 12:55
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,260 +1,106 @@ 1 - ==**Overview**==1 +**Neurodiagnoses AI** is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. Building upon the Florey Dementia Index (FDI) methodology, it now encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)**, which standardizes biomarker classification across all neurodegenerative diseases, facilitating cross-disease AI training. 2 2 3 - This project develops a**tridimensional diagnostic framework** for **CNS diseases**, incorporating**AI-powered annotation tools** to improve**interpretability, standardization, and clinical utility**. Themethodologyintegrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarkerdatasets**, and applies **machine learning models** toenerate**structured, explainable diagnostic outputs**.3 +**Neuromarker: Generalized Biomarker Ontology** 4 4 5 - ==**Workflow**==5 +Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration. 6 6 7 -1. ((( 8 -**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]** 7 +**Core Biomarker Categories** 9 9 10 -* Create a **GitHub repository** for AI scripts and models. 11 -* Use **GitHub Projects** to manage research milestones. 12 -))) 13 -1. ((( 14 -**We Use EBRAINS for Data & Collaboration** 9 +Within the Neurodiagnoses AI framework, biomarkers are categorized as follows: 15 15 16 -* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**. 17 -* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models. 18 -* Use **EBRAINS Wiki** for structured documentation and research discussion. 19 -))) 11 +|=**Category**|=**Description** 12 +|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 13 +|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 14 +|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL 15 +|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 16 +|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 17 +|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 18 +|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 19 +|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 20 20 21 - ----21 +**Integrating External Databases into Neurodiagnoses** 22 22 23 - ==**1.Data Integration**==23 +To enhance diagnostic precision, Neurodiagnoses AI incorporates data from multiple biomedical and neurological research databases. Researchers can integrate external datasets by following these steps: 24 24 25 -=== **EBRAINS Medical Informatics Platform (MIP)**. === 26 - 27 -Neurodiagnoses integrates clinical data via the **EBRAINS Medical Informatics Platform (MIP)**. MIP federates decentralized clinical data, allowing Neurodiagnoses to securely access and process sensitive information for AI-based diagnostics. 28 - 29 -==== How It Works ==== 30 - 31 - 32 32 1. ((( 33 -** Authentication&API Access:**26 +**Register for Access** 34 34 35 -* Users must have an **EBRAINS account**. 36 -* Neurodiagnoses uses **secure API endpoints** to fetch clinical data (e.g., from the **Federation for Dementia**). 28 +* Each external database requires individual registration and access approval. 29 +* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses. 30 +* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data. 37 37 ))) 38 38 1. ((( 39 -**Da taMapping&Harmonization:**33 +**Download & Prepare Data** 40 40 41 -* Retrieved data is **normalized** and converted to standard formats (.csv, .json). 42 -* Data from **multiple sources** is harmonized to ensure consistency for AI processing. 43 -))) 44 -1. ((( 45 -**Security & Compliance:** 35 +* Download datasets while adhering to database usage policies. 36 +* ((( 37 +Ensure files meet Neurodiagnoses format requirements: 46 46 47 -* All data access is **logged and monitored**. 48 -* Data remains on **MIP servers** using **federated learning techniques** when possible. 49 -* Access is granted only after signing a **Data Usage Agreement (DUA)**. 39 +|=**Data Type**|=**Accepted Formats** 40 +|**Tabular Data**|.csv, .tsv 41 +|**Neuroimaging**|.nii, .dcm 42 +|**Genomic Data**|.fasta, .vcf 43 +|**Clinical Metadata**|.json, .xml 50 50 ))) 45 +* ((( 46 +**Mandatory Fields for Integration**: 51 51 52 -==== Implementation Steps ==== 53 - 54 - 55 -1. Clone the repository. 56 -1. Configure your **EBRAINS API credentials** in mip_integration.py. 57 -1. Run the script to **download and harmonize clinical data**. 58 -1. Process the data for **AI model training**. 59 - 60 -For more detailed instructions, please refer to the **[[MIP Documentation>>url:https://mip.ebrains.eu/]]**. 61 - 62 ----- 63 - 64 -=== Data Processing & Integration with Clinica.Run === 65 - 66 -Neurodiagnoses now supports **Clinica.Run**, an open-source neuroimaging platform designed for **multimodal data processing and reproducible neuroscience workflows**. 67 - 68 -==== How It Works ==== 69 - 70 - 48 +* Subject ID: Unique patient identifier 49 +* Diagnosis: Standardized disease classification 50 +* Biomarkers: CSF, plasma, or imaging biomarkers 51 +* Genetic Data: Whole-genome or exome sequencing 52 +* Neuroimaging Metadata: MRI/PET acquisition parameters 53 +))) 54 +))) 71 71 1. ((( 72 -**Neuroi maging Preprocessing:**56 +**Upload Data to Neurodiagnoses** 73 73 74 -* MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines**. 75 -* Supports **longitudinal and cross-sectional analyses**. 58 +* ((( 59 +**Option 1: Upload to EBRAINS Bucket** 60 + 61 +* Location: EBRAINS Neurodiagnoses Bucket 62 +* Ensure correct metadata tagging before submission. 76 76 ))) 77 - 1.(((78 -** AutomatedBiomarkerExtraction:**64 +* ((( 65 +**Option 2: Contribute via GitHub Repository** 79 79 80 -* Standardized extraction of **volumetric, metabolic, and functional biomarkers**. 81 -* Integration with machine learning models in Neurodiagnoses. 67 +* Location: GitHub Data Repository 68 +* Create a new folder under /data/ and include a dataset description. 69 +* For large datasets, contact project administrators before uploading. 82 82 ))) 71 +))) 83 83 1. ((( 84 -**Data Security&Compliance:**73 +**Integrate Data into AI Models** 85 85 86 -* Clinica.Run operates in **compliance with GDPR and HIPAA**. 87 -* Neuroimaging data remains **within the original storage environment**. 75 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 76 +* Standardize neuroimaging and biomarker formats using harmonization tools. 77 +* Utilize machine learning models to handle missing data and feature extraction. 78 +* Train AI models with newly integrated patient cohorts. 79 + 80 +**Reference**: See docs/data_processing.md for detailed instructions. 88 88 ))) 89 89 90 - ====ImplementationSteps ====83 +**AI-Driven Biomarker Categorization** 91 91 85 +Neurodiagnoses employs advanced AI models for biomarker classification: 92 92 93 - 1. Install**Clinica.Run**dependencies.94 - 1.ConfigureyourClinica.Runpipeline** in clinica_run_config.json.95 - 1. Runhepipelinefor**preprocessingandbiomarkerextraction**.96 - 1.Useprocessedneuroimagingdata for **AI-drivendiagnostics**inNeurodiagnoses.87 +|=**Model Type**|=**Application** 88 +|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 89 +|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 90 +|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 97 97 98 - For further information,referto **[[Clinica.Run Documentation>>url:https://clinica.run/]]**.92 +**Collaboration & Partnerships** 99 99 100 - ========94 +Neurodiagnoses actively seeks partnerships with data providers to: 101 101 102 -==== **Data Sources** ==== 96 +* Enable API-based data integration for real-time processing. 97 +* Co-develop harmonized AI-ready datasets with standardized annotations. 98 +* Secure funding opportunities through joint grant applications. 103 103 104 - [[List of potential sourcesof databases>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]]100 +**Interested in Partnering?** 105 105 106 - **BiomedicalOntologies&Databases:**102 +If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 107 107 108 -* **Human Phenotype Ontology (HPO)** for symptom annotation. 109 -* **Gene Ontology (GO)** for molecular and cellular processes. 104 +**Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 110 110 111 -**Dimensionality Reduction and Interpretability:** 112 - 113 -* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 114 -* **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 115 - 116 -**Neuroimaging & EEG/MEG Data:** 117 - 118 -* **MRI volumetric measures** for brain atrophy tracking. 119 -* **EEG functional connectivity patterns** (AI-Mind). 120 - 121 -**Clinical & Biomarker Data:** 122 - 123 -* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 124 -* **Sleep monitoring and actigraphy data** (ADIS). 125 - 126 -**Federated Learning Integration:** 127 - 128 -* **Secure multi-center data harmonization** (PROMINENT). 129 - 130 ----- 131 - 132 -==== **Annotation System for Multi-Modal Data** ==== 133 - 134 -To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will: 135 - 136 -* **Assign standardized metadata tags** to diagnostic features. 137 -* **Provide contextual explanations** for AI-based classifications. 138 -* **Track temporal disease progression annotations** to identify long-term trends. 139 - 140 ----- 141 - 142 -== **2. AI-Based Analysis** == 143 - 144 -==== **Machine Learning & Deep Learning Models** ==== 145 - 146 -**Risk Prediction Models:** 147 - 148 -* **LETHE’s cognitive risk prediction model** integrated into the annotation framework. 149 - 150 -**Biomarker Classification & Probabilistic Imputation:** 151 - 152 -* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. 153 - 154 -**Neuroimaging Feature Extraction:** 155 - 156 -* **MRI & EEG data** annotated with **neuroanatomical feature labels**. 157 - 158 -==== **AI-Powered Annotation System** ==== 159 - 160 -* Uses **SHAP-based interpretability tools** to explain model decisions. 161 -* Generates **automated clinical annotations** in structured reports. 162 -* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). 163 - 164 ----- 165 - 166 -== **3. Diagnostic Framework & Clinical Decision Support** == 167 - 168 -==== **Tridimensional Diagnostic Axes** ==== 169 - 170 -**Axis 1: Etiology (Pathogenic Mechanisms)** 171 - 172 -* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 173 -* **AI-assisted annotation** provides **causal interpretations** for clinical use. 174 - 175 -**Axis 2: Molecular Markers & Biomarkers** 176 - 177 -* **Integration of CSF, blood, and neuroimaging biomarkers**. 178 -* **Structured annotation** highlights **biological pathways linked to diagnosis**. 179 - 180 -**Axis 3: Neuroanatomoclinical Correlations** 181 - 182 -* **MRI and EEG data** provide anatomical and functional insights. 183 -* **AI-generated progression maps** annotate **brain structure-function relationships**. 184 - 185 ----- 186 - 187 -== **4. Computational Workflow & Annotation Pipelines** == 188 - 189 -==== **Data Processing Steps** ==== 190 - 191 -**Data Ingestion:** 192 - 193 -* **Harmonized datasets** stored in **EBRAINS Bucket**. 194 -* **Preprocessing pipelines** clean and standardize data. 195 - 196 -**Feature Engineering:** 197 - 198 -* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. 199 - 200 -**AI-Generated Annotations:** 201 - 202 -* **Automated tagging** of diagnostic features in **structured reports**. 203 -* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 204 - 205 -**Clinical Decision Support Integration:** 206 - 207 -* **AI-annotated findings** fed into **interactive dashboards**. 208 -* **Clinicians can adjust, validate, and modify annotations**. 209 - 210 ----- 211 - 212 -== **5. Validation & Real-World Testing** == 213 - 214 -==== **Prospective Clinical Study** ==== 215 - 216 -* **Multi-center validation** of AI-based **annotations & risk stratifications**. 217 -* **Benchmarking against clinician-based diagnoses**. 218 -* **Real-world testing** of AI-powered **structured reporting**. 219 - 220 -==== **Quality Assurance & Explainability** ==== 221 - 222 -* **Annotations linked to structured knowledge graphs** for improved transparency. 223 -* **Interactive annotation editor** allows clinicians to validate AI outputs. 224 - 225 ----- 226 - 227 -== **6. Collaborative Development** == 228 - 229 -The project is **open to contributions** from **researchers, clinicians, and developers**. 230 - 231 -**Key tools include:** 232 - 233 -* **Jupyter Notebooks**: For data analysis and pipeline development. 234 -** Example: **probabilistic imputation** 235 -* **Wiki Pages**: For documenting methods and results. 236 -* **Drive and Bucket**: For sharing code, data, and outputs. 237 -* **Collaboration with related projects**: 238 -** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 239 - 240 ----- 241 - 242 -== **7. Tools and Technologies** == 243 - 244 -==== **Programming Languages:** ==== 245 - 246 -* **Python** for AI and data processing. 247 - 248 -==== **Frameworks:** ==== 249 - 250 -* **TensorFlow** and **PyTorch** for machine learning. 251 -* **Flask** or **FastAPI** for backend services. 252 - 253 -==== **Visualization:** ==== 254 - 255 -* **Plotly** and **Matplotlib** for interactive and static visualizations. 256 - 257 -==== **EBRAINS Services:** ==== 258 - 259 -* **Collaboratory Lab** for running Notebooks. 260 -* **Buckets** for storing large datasets. 106 +
- workflow neurodiagnoses.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.manuelmenendez - Size
-
... ... @@ -1,0 +1,1 @@ 1 +157.5 KB - Content