Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 17.1
edited by manuelmenendez
on 2025/02/09 13:01
on 2025/02/09 13:01
Change comment:
There is no comment for this version
To version 20.1
edited by manuelmenendez
on 2025/02/14 14:47
on 2025/02/14 14:47
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,154 +1,146 @@ 1 - ==**Overview**==1 +Here is the updated **Methodology** section for the EBRAINS Wiki, incorporating the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)** for **biomarker classification across all neurodegenerative diseases**. 2 2 3 -Neurodiagnoses develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility.** 4 - 5 -This methodology integrates **multi-modal data**, including: 6 -**Genetic data** (whole-genome sequencing, polygenic risk scores). 7 -**Neuroimaging** (MRI, PET, EEG, MEG). 8 -**Neurophysiological data** (EEG-based biomarkers, sleep actigraphy). 9 -**CSF & Blood Biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 10 - 11 -By applying **machine learning models**, Neurodiagnoses generates **structured, explainable diagnostic outputs** to assist **clinical decision-making** and **biomarker-driven patient stratification.** 12 - 13 13 ---- 14 14 15 -== ** DataIntegration&ExternalDatabases** ==5 +== **Neurodiagnoses AI: Multimodal AI for Neurodiagnostic Predictions** == 16 16 17 -=== ** How to UseExternalDatabases in Neurodiagnoses** ===7 +=== **Project Overview** === 18 18 19 -Neurodiagnoses int egratesdatafrommultiple **biomedical and neurologicalresearchdatabases**.Researchers canfollowthesesteps to **access,prepare,andintegrate**data into theNeurodiagnosesframework.9 +Neurodiagnoses AI implements **AI-driven diagnostic and prognostic models** for central nervous system (CNS) disorders, expanding the **Florey Dementia Index (FDI) methodology** to a broader set of neurological conditions. The approach integrates **multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics) and employs machine learning models to provide **explainable, real-time diagnostic insights**. This framework now incorporates **Neuromarker**, a **generalized biomarker ontology** that categorizes biomarkers across neurodegenerative diseases, enabling **standardized, cross-disease AI training**. 20 20 21 -**Potential Data Sources** 22 -**Reference:** [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 11 +== **Neuromarker: Generalized Biomarker Ontology** == 23 23 24 - ===**Register forAccess**===13 +Neuromarker extends the **Common Alzheimer’s Disease Research Ontology (CADRO)** into a **cross-disease biomarker categorization framework** applicable to all neurodegenerative diseases (NDDs). It allows for **standardized classification, AI-based feature extraction, and multimodal integration**. 25 25 26 -Each **external database** requires **individual registration** and approval. 27 -✔️ Follow the official **data access guidelines** of each provider. 28 -✔️ Ensure compliance with **ethical approvals** and **data-sharing agreements (DUAs).** 15 +=== **Core Biomarker Categories** === 29 29 30 - ===**Download&PrepareData** ===17 +The following ontology is used within **Neurodiagnoses AI** for biomarker categorization: 31 31 32 -Once access is granted, download datasets **following compliance guidelines** and **format requirements** for integration. 19 +|=**Category**|=**Description** 20 +|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 21 +|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 22 +|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL 23 +|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 24 +|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 25 +|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 26 +|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 27 +|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 33 33 34 - **Supported File Formats**29 +---- 35 35 36 -* **Tabular Data**: .csv, .tsv 37 -* **Neuroimaging Data**: .nii, .dcm 38 -* **Genomic Data**: .fasta, .vcf 39 -* **Clinical Metadata**: .json, .xml 31 +== **How to Use External Databases in Neurodiagnoses** == 40 40 41 - **MandatoryFields forIntegration**33 +To enhance diagnostic accuracy, Neurodiagnoses AI integrates data from **multiple biomedical and neurological research databases**. Researchers can follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework. 42 42 43 -|=**Field Name**|=**Description** 44 -|**Subject ID**|Unique patient identifier 45 -|**Diagnosis**|Standardized disease classification 46 -|**Biomarkers**|CSF, plasma, or imaging biomarkers 47 -|**Genetic Data**|Whole-genome or exome sequencing 48 -|**Neuroimaging Metadata**|MRI/PET acquisition parameters 35 +=== **Potential Data Sources** === 49 49 50 - ===**UploadData toNeurodiagnoses** ===37 +Neurodiagnoses maintains an **updated list** of biomedical datasets relevant to neurodegenerative diseases: 51 51 52 -**Option 1:** Upload to **EBRAINS Bucket** → [[Neurodiagnoses Data Storage>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]] 53 -**Option 2:** Contribute via **GitHub Repository** → [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]] 39 +* **ADNI**: Alzheimer's Disease Imaging & Biomarkers → [[ADNI>>url:https://adni.loni.usc.edu/]] 40 +* **PPMI**: Parkinson’s Disease Imaging & Biospecimens → [[PPMI>>url:https://www.ppmi-info.org/]] 41 +* **GP2**: Whole-Genome Sequencing for PD → [[GP2>>url:https://gp2.org/]] 42 +* **Enroll-HD**: Huntington’s Disease Clinical & Genetic Data → [[Enroll-HD>>url:https://www.enroll-hd.org/]] 43 +* **GAAIN**: Multi-Source Alzheimer’s Data Aggregation → [[GAAIN>>url:https://gaain.org/]] 44 +* **UK Biobank**: Population-Wide Genetic, Imaging & Health Records → [[UK Biobank>>url:https://www.ukbiobank.ac.uk/]] 45 +* **DPUK**: Dementia & Aging Data → [[DPUK>>url:https://www.dementiasplatform.uk/]] 46 +* **PRION Registry**: Prion Diseases Clinical & Genetic Data → [[PRION Registry>>url:https://prionregistry.org/]] 47 +* **DECIPHER**: Rare Genetic Disorder Genomic Variants → [[DECIPHER>>url:https://decipher.sanger.ac.uk/]] 54 54 55 - **For large datasets, please contact project administrators before uploading.**49 +---- 56 56 57 -== =**IntegrateData into AI Models** ===51 +== **1. Register for Access** == 58 58 59 - Use**JupyterNotebooks**on EBRAINS for **datapreprocessing.**60 - Standardizedata using**harmonization tools.**61 - TrainAImodelswith**newlyintegrated datasets.**53 +* Each external database requires **individual registration and access approval**. 54 +* Ensure compliance with **ethical approvals and data usage agreements** before integrating datasets into Neurodiagnoses. 55 +* Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data. 62 62 63 -**Reference:** [[Data Processing Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]] 64 - 65 65 ---- 66 66 67 -== ** AI-Powered Annotation&MachineLearning Models** ==59 +== **2. Download & Prepare Data** == 68 68 69 -Neurodiagnoses applies **advanced machine learning models** to classify CNS diseases, extract features from **biomarkers and neuroimaging**, and provide **AI-powered annotation.** 61 +* Download datasets while adhering to **database usage policies**. 62 +* Ensure files meet **Neurodiagnoses format requirements**: 70 70 71 -=== **AI Model Categories** === 64 +|=**Data Type**|=**Accepted Formats** 65 +|**Tabular Data**|.csv, .tsv 66 +|**Neuroimaging**|.nii, .dcm 67 +|**Genomic Data**|.fasta, .vcf 68 +|**Clinical Metadata**|.json, .xml 72 72 73 - |=**ModelType**|=**Function**|=**ExampleAlgorithms**74 - |**Probabilistic Diagnosis**|Assignsprobability scorestomultiple CNSdisorders.|Random Forest, XGBoost, Bayesian Networks75 - |**TridimensionalDiagnosis**|Classifiesdisorders basedon Etiology, Biomarkers, and Neuroanatomical Correlations.|CNNs, Transformers, Autoencoders76 - |**BiomarkerPrediction**|Predicts missing biomarkervaluesusing regression.|KNN Imputation, Bayesian Estimation77 - |**Neuroimaging FeatureExtraction**|ExtractspatternsfromMRI, PET, EEG.|CNNs, Graph Neural Networks78 - |**ClinicalDecisionSupport**|GeneratesAI-drivendiagnostic reports.|SHAPExplainability Tools70 +* **Mandatory Fields for Integration**: 71 +** **Subject ID**: Unique patient identifier 72 +** **Diagnosis**: Standardized disease classification 73 +** **Biomarkers**: CSF, plasma, or imaging biomarkers 74 +** **Genetic Data**: Whole-genome or exome sequencing 75 +** **Neuroimaging Metadata**: MRI/PET acquisition parameters 79 79 80 -**Reference:** [[AI Model Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/models.md]] 81 - 82 82 ---- 83 83 84 -== ** ClinicalDecisionSupport & Tridimensional Diagnostic Framework** ==79 +== **3. Upload Data to Neurodiagnoses** == 85 85 86 - Neurodiagnoses generates**structuredAIreports**for clinicians, combining:81 +=== **Option 1: Upload to EBRAINS Bucket** === 87 87 88 -* *Probabilistic Diagnosis:**-generated rankingof potentialdiagnoses.89 -* *TridimensionalClassification:**Standardizeddiagnosticreportsbasedon:83 +* Location: **EBRAINS Neurodiagnoses Bucket** 84 +* Ensure **correct metadata tagging** before submission. 90 90 91 -1. **Axis 1:** **Etiology** → Genetic, Autoimmune, Prion, Toxic, Vascular. 92 -1. **Axis 2:** **Molecular Markers** → CSF, Neuroinflammation, EEG biomarkers. 93 -1. **Axis 3:** **Neuroanatomoclinical Correlations** → MRI atrophy, PET. 86 +=== **Option 2: Contribute via GitHub Repository** === 94 94 95 -**Reference:** [[Tridimensional Classification Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/classification.md]] 88 +* Location: **GitHub Data Repository** 89 +* Create a **new folder under /data/** and include a **dataset description**. 90 +* **For large datasets**, contact project administrators before uploading. 96 96 97 97 ---- 98 98 99 -== **Data Security, Compliance&Federated Learning** ==94 +== **4. Integrate Data into AI Models** == 100 100 101 -✔ **Privacy-Preserving AI**: Implements **Federated Learning**, ensuring that patient data **never leaves** local institutions. 102 -✔ **Secure Data Access**: Data remains **stored in EBRAINS MIP servers** using **differential privacy techniques.** 103 -✔ **Ethical & GDPR Compliance**: Data-sharing agreements **must be signed** before use. 96 +* Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**. 97 +* **Standardize neuroimaging and biomarker formats** using harmonization tools. 98 +* Use **machine learning models** to handle **missing data** and **feature extraction**. 99 +* Train AI models with **newly integrated patient cohorts**. 104 104 105 -**Reference :**[[DataProtection&FederatedLearning>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/security.md]]101 +**Reference**: See docs/data_processing.md for detailed instructions. 106 106 107 107 ---- 108 108 109 -== **D ata Processing&Integrationwith Clinica.Run** ==105 +== **AI-Driven Biomarker Categorization** == 110 110 111 -Neurodiagnoses now supports **Clinica.Run**,an **open-source neuroimaging platform** for**multimodal data processing.**107 +Neurodiagnoses employs **AI models** for biomarker classification: 112 112 113 -=== **How It Works** === 109 +|=**Model Type**|=**Application** 110 +|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 111 +|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 112 +|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 114 114 115 -✔ **Neuroimaging Preprocessing**: MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines.** 116 -✔ **Automated Biomarker Extraction**: Extracts volumetric, metabolic, and functional biomarkers. 117 -✔ **Data Security & Compliance**: Clinica.Run is **GDPR & HIPAA-compliant.** 114 +---- 118 118 119 -== =**ImplementationSteps** ===116 +== **Collaboration & Partnerships** == 120 120 121 -1. Install **Clinica.Run** dependencies. 122 -1. Configure **Clinica.Run pipeline** in clinica_run_config.json. 123 -1. Run **biomarker extraction pipelines** for AI-based diagnostics. 118 +=== **Partnering with Data Providers** === 124 124 125 - **Reference:** [[Clinica.RunDocumentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/clinica_run.md]]120 +Neurodiagnoses seeks partnerships with data repositories to: 126 126 127 ----- 122 +* Enable **API-based data integration** for real-time processing. 123 +* Co-develop **harmonized AI-ready datasets** with standardized annotations. 124 +* Secure **funding opportunities** through joint grant applications. 128 128 129 - ==**CollaborativeDevelopment& Research**==126 +**Interested in Partnering?** 130 130 131 -**We Use GitHub to Develop AI Models & Store Research Data** 128 +* If you represent a **research consortium or database provider**, reach out to explore **data-sharing agreements**. 129 +* **Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 132 132 133 -* **GitHub Repository:** AI model training scripts. 134 -* **GitHub Issues:** Tracks ongoing research questions. 135 -* **GitHub Wiki:** Project documentation & user guides. 131 +---- 136 136 137 -** WeUse EBRAINS for Data & Collaboration**133 +== **Final Notes** == 138 138 139 -* **EBRAINS Buckets:** Large-scale neuroimaging and biomarker storage. 140 -* **EBRAINS Jupyter Notebooks:** Cloud-based AI model execution. 141 -* **EBRAINS Wiki:** Research documentation and updates. 135 +Neurodiagnoses continuously expands its **data ecosystem** to support **AI-driven clinical decision-making**. Researchers and institutions are encouraged to **contribute new datasets and methodologies**. 142 142 143 -** Join the ProjectForum:**[[GitHub Discussions>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]137 +**For additional technical documentation**: 144 144 145 ----- 139 +* **GitHub Repository**: [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]] 140 +* **EBRAINS Collaboration Page**: [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]] 146 146 147 -** ForAdditionalDocumentation:**142 +**If you experience issues integrating data**, open a **GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**. 148 148 149 -* **GitHub Repository:** [[Neurodiagnoses AI Models>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]] 150 -* **EBRAINS Wiki:** [[Neurodiagnoses Research Collaboration>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]] 151 - 152 152 ---- 153 153 154 -**Neurodiagnoses s Open forContributions–JoinUsToday!**146 +This **updated methodology** now incorporates [[https:~~/~~/github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/biomarker_ontology>>https://Neuromarker]] for standardized biomarker classification, enabling **cross-disease AI training** across neurodegenerative disorders.