Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 17.1
edited by manuelmenendez
on 2025/02/09 13:01
on 2025/02/09 13:01
Change comment:
There is no comment for this version
To version 22.1
edited by manuelmenendez
on 2025/02/15 12:55
on 2025/02/15 12:55
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,154 +1,106 @@ 1 - ==**Overview**==1 +**Neurodiagnoses AI** is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. Building upon the Florey Dementia Index (FDI) methodology, it now encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)**, which standardizes biomarker classification across all neurodegenerative diseases, facilitating cross-disease AI training. 2 2 3 -Neuro diagnoses develops a **tridimensional diagnostic framework**for **CNS diseases**, incorporating **AI-poweredannotation tools** to improve**interpretability,standardization, and clinical utility.**3 +**Neuromarker: Generalized Biomarker Ontology** 4 4 5 -This methodology integrates **multi-modal data**, including: 6 -**Genetic data** (whole-genome sequencing, polygenic risk scores). 7 -**Neuroimaging** (MRI, PET, EEG, MEG). 8 -**Neurophysiological data** (EEG-based biomarkers, sleep actigraphy). 9 -**CSF & Blood Biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 5 +Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration. 10 10 11 - By applying**machine learning models**, Neurodiagnosesgenerates **structured, explainable diagnostic outputs** to assist **clinical decision-making** and **biomarker-drivenpatient stratification.**7 +**Core Biomarker Categories** 12 12 13 - ----9 +Within the Neurodiagnoses AI framework, biomarkers are categorized as follows: 14 14 15 -== **Data Integration & External Databases** == 11 +|=**Category**|=**Description** 12 +|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 13 +|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 14 +|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL 15 +|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 16 +|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 17 +|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 18 +|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 19 +|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 16 16 17 - ===**Howto Use External Databases in Neurodiagnoses**===21 +**Integrating External Databases into Neurodiagnoses** 18 18 19 -Neurodiagnoses in tegrates data from multiple**biomedical and neurological research databases**. Researchers canfollowthese steps to **access, prepare,and integrate**data intotheNeurodiagnosesframework.23 +To enhance diagnostic precision, Neurodiagnoses AI incorporates data from multiple biomedical and neurological research databases. Researchers can integrate external datasets by following these steps: 20 20 21 - **PotentialData Sources**22 -**Re ference:** [[ListofPotential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]]25 +1. ((( 26 +**Register for Access** 23 23 24 -=== **Register for Access** === 28 +* Each external database requires individual registration and access approval. 29 +* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses. 30 +* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data. 31 +))) 32 +1. ((( 33 +**Download & Prepare Data** 25 25 26 - Each**external database** requires**individualregistration**and approval.27 - ✔️ Follow the official**dataaccess guidelines** of each provider.28 - ✔️Ensurecompliancewith **ethicalapprovals**and **data-sharing agreements(DUAs).**35 +* Download datasets while adhering to database usage policies. 36 +* ((( 37 +Ensure files meet Neurodiagnoses format requirements: 29 29 30 -=== **Download & Prepare Data** === 39 +|=**Data Type**|=**Accepted Formats** 40 +|**Tabular Data**|.csv, .tsv 41 +|**Neuroimaging**|.nii, .dcm 42 +|**Genomic Data**|.fasta, .vcf 43 +|**Clinical Metadata**|.json, .xml 44 +))) 45 +* ((( 46 +**Mandatory Fields for Integration**: 31 31 32 -Once access is granted, download datasets **following compliance guidelines** and **format requirements** for integration. 48 +* Subject ID: Unique patient identifier 49 +* Diagnosis: Standardized disease classification 50 +* Biomarkers: CSF, plasma, or imaging biomarkers 51 +* Genetic Data: Whole-genome or exome sequencing 52 +* Neuroimaging Metadata: MRI/PET acquisition parameters 53 +))) 54 +))) 55 +1. ((( 56 +**Upload Data to Neurodiagnoses** 33 33 34 -**Supported File Formats** 58 +* ((( 59 +**Option 1: Upload to EBRAINS Bucket** 35 35 36 -* **Tabular Data**: .csv, .tsv 37 -* **Neuroimaging Data**: .nii, .dcm 38 -* **Genomic Data**: .fasta, .vcf 39 -* **Clinical Metadata**: .json, .xml 61 +* Location: EBRAINS Neurodiagnoses Bucket 62 +* Ensure correct metadata tagging before submission. 63 +))) 64 +* ((( 65 +**Option 2: Contribute via GitHub Repository** 40 40 41 -**Mandatory Fields for Integration** 67 +* Location: GitHub Data Repository 68 +* Create a new folder under /data/ and include a dataset description. 69 +* For large datasets, contact project administrators before uploading. 70 +))) 71 +))) 72 +1. ((( 73 +**Integrate Data into AI Models** 42 42 43 -|=**Field Name**|=**Description** 44 -|**Subject ID**|Unique patient identifier 45 -|**Diagnosis**|Standardized disease classification 46 -|**Biomarkers**|CSF, plasma, or imaging biomarkers 47 -|**Genetic Data**|Whole-genome or exome sequencing 48 -|**Neuroimaging Metadata**|MRI/PET acquisition parameters 75 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 76 +* Standardize neuroimaging and biomarker formats using harmonization tools. 77 +* Utilize machine learning models to handle missing data and feature extraction. 78 +* Train AI models with newly integrated patient cohorts. 49 49 50 -=== **Upload Data to Neurodiagnoses** === 80 +**Reference**: See docs/data_processing.md for detailed instructions. 81 +))) 51 51 52 -**Option 1:** Upload to **EBRAINS Bucket** → [[Neurodiagnoses Data Storage>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]] 53 -**Option 2:** Contribute via **GitHub Repository** → [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]] 83 +**AI-Driven Biomarker Categorization** 54 54 55 - **For largetasets,pleasecontact project administratorsbeforeuploading.**85 +Neurodiagnoses employs advanced AI models for biomarker classification: 56 56 57 -=== **Integrate Data into AI Models** === 87 +|=**Model Type**|=**Application** 88 +|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 89 +|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 90 +|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 58 58 59 -Use **Jupyter Notebooks** on EBRAINS for **data preprocessing.** 60 -Standardize data using **harmonization tools.** 61 -Train AI models with **newly integrated datasets.** 92 +**Collaboration & Partnerships** 62 62 63 - **Reference:**[[Data Processing Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]]94 +Neurodiagnoses actively seeks partnerships with data providers to: 64 64 65 ----- 96 +* Enable API-based data integration for real-time processing. 97 +* Co-develop harmonized AI-ready datasets with standardized annotations. 98 +* Secure funding opportunities through joint grant applications. 66 66 67 - ==**AI-PoweredAnnotation& MachineLearningModels**==100 +**Interested in Partnering?** 68 68 69 - Neurodiagnoses applies**advancedmachinelearningmodels** toclassifyCNSdiseases,extractfeaturesfrom**biomarkersandneuroimaging**,and provide**AI-powered annotation.**102 +If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 70 70 71 - ===**AIModel Categories** ===104 +**Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 72 72 73 -|=**Model Type**|=**Function**|=**Example Algorithms** 74 -|**Probabilistic Diagnosis**|Assigns probability scores to multiple CNS disorders.|Random Forest, XGBoost, Bayesian Networks 75 -|**Tridimensional Diagnosis**|Classifies disorders based on Etiology, Biomarkers, and Neuroanatomical Correlations.|CNNs, Transformers, Autoencoders 76 -|**Biomarker Prediction**|Predicts missing biomarker values using regression.|KNN Imputation, Bayesian Estimation 77 -|**Neuroimaging Feature Extraction**|Extracts patterns from MRI, PET, EEG.|CNNs, Graph Neural Networks 78 -|**Clinical Decision Support**|Generates AI-driven diagnostic reports.|SHAP Explainability Tools 79 - 80 -**Reference:** [[AI Model Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/models.md]] 81 - 82 ----- 83 - 84 -== **Clinical Decision Support & Tridimensional Diagnostic Framework** == 85 - 86 -Neurodiagnoses generates **structured AI reports** for clinicians, combining: 87 - 88 -**Probabilistic Diagnosis:** AI-generated ranking of potential diagnoses. 89 -**Tridimensional Classification:** Standardized diagnostic reports based on: 90 - 91 -1. **Axis 1:** **Etiology** → Genetic, Autoimmune, Prion, Toxic, Vascular. 92 -1. **Axis 2:** **Molecular Markers** → CSF, Neuroinflammation, EEG biomarkers. 93 -1. **Axis 3:** **Neuroanatomoclinical Correlations** → MRI atrophy, PET. 94 - 95 -**Reference:** [[Tridimensional Classification Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/classification.md]] 96 - 97 ----- 98 - 99 -== **Data Security, Compliance & Federated Learning** == 100 - 101 -✔ **Privacy-Preserving AI**: Implements **Federated Learning**, ensuring that patient data **never leaves** local institutions. 102 -✔ **Secure Data Access**: Data remains **stored in EBRAINS MIP servers** using **differential privacy techniques.** 103 -✔ **Ethical & GDPR Compliance**: Data-sharing agreements **must be signed** before use. 104 - 105 -**Reference:** [[Data Protection & Federated Learning>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/security.md]] 106 - 107 ----- 108 - 109 -== **Data Processing & Integration with Clinica.Run** == 110 - 111 -Neurodiagnoses now supports **Clinica.Run**, an **open-source neuroimaging platform** for **multimodal data processing.** 112 - 113 -=== **How It Works** === 114 - 115 -✔ **Neuroimaging Preprocessing**: MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines.** 116 -✔ **Automated Biomarker Extraction**: Extracts volumetric, metabolic, and functional biomarkers. 117 -✔ **Data Security & Compliance**: Clinica.Run is **GDPR & HIPAA-compliant.** 118 - 119 -=== **Implementation Steps** === 120 - 121 -1. Install **Clinica.Run** dependencies. 122 -1. Configure **Clinica.Run pipeline** in clinica_run_config.json. 123 -1. Run **biomarker extraction pipelines** for AI-based diagnostics. 124 - 125 -**Reference:** [[Clinica.Run Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/clinica_run.md]] 126 - 127 ----- 128 - 129 -== **Collaborative Development & Research** == 130 - 131 -**We Use GitHub to Develop AI Models & Store Research Data** 132 - 133 -* **GitHub Repository:** AI model training scripts. 134 -* **GitHub Issues:** Tracks ongoing research questions. 135 -* **GitHub Wiki:** Project documentation & user guides. 136 - 137 -**We Use EBRAINS for Data & Collaboration** 138 - 139 -* **EBRAINS Buckets:** Large-scale neuroimaging and biomarker storage. 140 -* **EBRAINS Jupyter Notebooks:** Cloud-based AI model execution. 141 -* **EBRAINS Wiki:** Research documentation and updates. 142 - 143 -**Join the Project Forum:** [[GitHub Discussions>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]] 144 - 145 ----- 146 - 147 -**For Additional Documentation:** 148 - 149 -* **GitHub Repository:** [[Neurodiagnoses AI Models>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]] 150 -* **EBRAINS Wiki:** [[Neurodiagnoses Research Collaboration>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]] 151 - 152 ----- 153 - 154 -**Neurodiagnoses is Open for Contributions – Join Us Today!** 106 +
- workflow neurodiagnoses.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.manuelmenendez - Size
-
... ... @@ -1,0 +1,1 @@ 1 +157.5 KB - Content