Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 17.1
edited by manuelmenendez
on 2025/02/09 13:01
Change comment: There is no comment for this version
To version 22.1
edited by manuelmenendez
on 2025/02/15 12:55
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,154 +1,106 @@
1 -== **Overview** ==
1 +**Neurodiagnoses AI** is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. Building upon the Florey Dementia Index (FDI) methodology, it now encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)**, which standardizes biomarker classification across all neurodegenerative diseases, facilitating cross-disease AI training.
2 2  
3 -Neurodiagnoses develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility.**
3 +**Neuromarker: Generalized Biomarker Ontology**
4 4  
5 -This methodology integrates **multi-modal data**, including:
6 -**Genetic data** (whole-genome sequencing, polygenic risk scores).
7 -**Neuroimaging** (MRI, PET, EEG, MEG).
8 -**Neurophysiological data** (EEG-based biomarkers, sleep actigraphy).
9 -**CSF & Blood Biomarkers** (Amyloid-beta, Tau, Neurofilament Light).
5 +Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration.
10 10  
11 -By applying **machine learning models**, Neurodiagnoses generates **structured, explainable diagnostic outputs** to assist **clinical decision-making** and **biomarker-driven patient stratification.**
7 +**Core Biomarker Categories**
12 12  
13 -----
9 +Within the Neurodiagnoses AI framework, biomarkers are categorized as follows:
14 14  
15 -== **Data Integration & External Databases** ==
11 +|=**Category**|=**Description**
12 +|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic)
13 +|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein)
14 +|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL
15 +|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers
16 +|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers
17 +|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS)
18 +|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores
19 +|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities
16 16  
17 -=== **How to Use External Databases in Neurodiagnoses** ===
21 +**Integrating External Databases into Neurodiagnoses**
18 18  
19 -Neurodiagnoses integrates data from multiple **biomedical and neurological research databases**. Researchers can follow these steps to **access, prepare, and integrate** data into the Neurodiagnoses framework.
23 +To enhance diagnostic precision, Neurodiagnoses AI incorporates data from multiple biomedical and neurological research databases. Researchers can integrate external datasets by following these steps:
20 20  
21 -**Potential Data Sources**
22 -**Reference:** [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]]
25 +1. (((
26 +**Register for Access**
23 23  
24 -=== **Register for Access** ===
28 +* Each external database requires individual registration and access approval.
29 +* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses.
30 +* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data.
31 +)))
32 +1. (((
33 +**Download & Prepare Data**
25 25  
26 -Each **external database** requires **individual registration** and approval.
27 -✔️ Follow the official **data access guidelines** of each provider.
28 -✔️ Ensure compliance with **ethical approvals** and **data-sharing agreements (DUAs).**
35 +* Download datasets while adhering to database usage policies.
36 +* (((
37 +Ensure files meet Neurodiagnoses format requirements:
29 29  
30 -=== **Download & Prepare Data** ===
39 +|=**Data Type**|=**Accepted Formats**
40 +|**Tabular Data**|.csv, .tsv
41 +|**Neuroimaging**|.nii, .dcm
42 +|**Genomic Data**|.fasta, .vcf
43 +|**Clinical Metadata**|.json, .xml
44 +)))
45 +* (((
46 +**Mandatory Fields for Integration**:
31 31  
32 -Once access is granted, download datasets **following compliance guidelines** and **format requirements** for integration.
48 +* Subject ID: Unique patient identifier
49 +* Diagnosis: Standardized disease classification
50 +* Biomarkers: CSF, plasma, or imaging biomarkers
51 +* Genetic Data: Whole-genome or exome sequencing
52 +* Neuroimaging Metadata: MRI/PET acquisition parameters
53 +)))
54 +)))
55 +1. (((
56 +**Upload Data to Neurodiagnoses**
33 33  
34 -**Supported File Formats**
58 +* (((
59 +**Option 1: Upload to EBRAINS Bucket**
35 35  
36 -* **Tabular Data**: .csv, .tsv
37 -* **Neuroimaging Data**: .nii, .dcm
38 -* **Genomic Data**: .fasta, .vcf
39 -* **Clinical Metadata**: .json, .xml
61 +* Location: EBRAINS Neurodiagnoses Bucket
62 +* Ensure correct metadata tagging before submission.
63 +)))
64 +* (((
65 +**Option 2: Contribute via GitHub Repository**
40 40  
41 -**Mandatory Fields for Integration**
67 +* Location: GitHub Data Repository
68 +* Create a new folder under /data/ and include a dataset description.
69 +* For large datasets, contact project administrators before uploading.
70 +)))
71 +)))
72 +1. (((
73 +**Integrate Data into AI Models**
42 42  
43 -|=**Field Name**|=**Description**
44 -|**Subject ID**|Unique patient identifier
45 -|**Diagnosis**|Standardized disease classification
46 -|**Biomarkers**|CSF, plasma, or imaging biomarkers
47 -|**Genetic Data**|Whole-genome or exome sequencing
48 -|**Neuroimaging Metadata**|MRI/PET acquisition parameters
75 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts.
76 +* Standardize neuroimaging and biomarker formats using harmonization tools.
77 +* Utilize machine learning models to handle missing data and feature extraction.
78 +* Train AI models with newly integrated patient cohorts.
49 49  
50 -=== **Upload Data to Neurodiagnoses** ===
80 +**Reference**: See docs/data_processing.md for detailed instructions.
81 +)))
51 51  
52 -**Option 1:** Upload to **EBRAINS Bucket** → [[Neurodiagnoses Data Storage>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]]
53 -**Option 2:** Contribute via **GitHub Repository** → [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]]
83 +**AI-Driven Biomarker Categorization**
54 54  
55 -**For large datasets, please contact project administrators before uploading.**
85 +Neurodiagnoses employs advanced AI models for biomarker classification:
56 56  
57 -=== **Integrate Data into AI Models** ===
87 +|=**Model Type**|=**Application**
88 +|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases
89 +|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers
90 +|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data
58 58  
59 -Use **Jupyter Notebooks** on EBRAINS for **data preprocessing.**
60 -Standardize data using **harmonization tools.**
61 -Train AI models with **newly integrated datasets.**
92 +**Collaboration & Partnerships**
62 62  
63 -**Reference:** [[Data Processing Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]]
94 +Neurodiagnoses actively seeks partnerships with data providers to:
64 64  
65 -----
96 +* Enable API-based data integration for real-time processing.
97 +* Co-develop harmonized AI-ready datasets with standardized annotations.
98 +* Secure funding opportunities through joint grant applications.
66 66  
67 -== **AI-Powered Annotation & Machine Learning Models** ==
100 +**Interested in Partnering?**
68 68  
69 -Neurodiagnoses applies **advanced machine learning models** to classify CNS diseases, extract features from **biomarkers and neuroimaging**, and provide **AI-powered annotation.**
102 +If you represent a research consortium or database provider, reach out to explore data-sharing agreements.
70 70  
71 -=== **AI Model Categories** ===
104 +**Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]
72 72  
73 -|=**Model Type**|=**Function**|=**Example Algorithms**
74 -|**Probabilistic Diagnosis**|Assigns probability scores to multiple CNS disorders.|Random Forest, XGBoost, Bayesian Networks
75 -|**Tridimensional Diagnosis**|Classifies disorders based on Etiology, Biomarkers, and Neuroanatomical Correlations.|CNNs, Transformers, Autoencoders
76 -|**Biomarker Prediction**|Predicts missing biomarker values using regression.|KNN Imputation, Bayesian Estimation
77 -|**Neuroimaging Feature Extraction**|Extracts patterns from MRI, PET, EEG.|CNNs, Graph Neural Networks
78 -|**Clinical Decision Support**|Generates AI-driven diagnostic reports.|SHAP Explainability Tools
79 -
80 -**Reference:** [[AI Model Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/models.md]]
81 -
82 -----
83 -
84 -== **Clinical Decision Support & Tridimensional Diagnostic Framework** ==
85 -
86 -Neurodiagnoses generates **structured AI reports** for clinicians, combining:
87 -
88 -**Probabilistic Diagnosis:** AI-generated ranking of potential diagnoses.
89 -**Tridimensional Classification:** Standardized diagnostic reports based on:
90 -
91 -1. **Axis 1:** **Etiology** → Genetic, Autoimmune, Prion, Toxic, Vascular.
92 -1. **Axis 2:** **Molecular Markers** → CSF, Neuroinflammation, EEG biomarkers.
93 -1. **Axis 3:** **Neuroanatomoclinical Correlations** → MRI atrophy, PET.
94 -
95 -**Reference:** [[Tridimensional Classification Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/classification.md]]
96 -
97 -----
98 -
99 -== **Data Security, Compliance & Federated Learning** ==
100 -
101 -✔ **Privacy-Preserving AI**: Implements **Federated Learning**, ensuring that patient data **never leaves** local institutions.
102 -✔ **Secure Data Access**: Data remains **stored in EBRAINS MIP servers** using **differential privacy techniques.**
103 -✔ **Ethical & GDPR Compliance**: Data-sharing agreements **must be signed** before use.
104 -
105 -**Reference:** [[Data Protection & Federated Learning>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/security.md]]
106 -
107 -----
108 -
109 -== **Data Processing & Integration with Clinica.Run** ==
110 -
111 -Neurodiagnoses now supports **Clinica.Run**, an **open-source neuroimaging platform** for **multimodal data processing.**
112 -
113 -=== **How It Works** ===
114 -
115 -✔ **Neuroimaging Preprocessing**: MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines.**
116 -✔ **Automated Biomarker Extraction**: Extracts volumetric, metabolic, and functional biomarkers.
117 -✔ **Data Security & Compliance**: Clinica.Run is **GDPR & HIPAA-compliant.**
118 -
119 -=== **Implementation Steps** ===
120 -
121 -1. Install **Clinica.Run** dependencies.
122 -1. Configure **Clinica.Run pipeline** in clinica_run_config.json.
123 -1. Run **biomarker extraction pipelines** for AI-based diagnostics.
124 -
125 -**Reference:** [[Clinica.Run Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/clinica_run.md]]
126 -
127 -----
128 -
129 -== **Collaborative Development & Research** ==
130 -
131 -**We Use GitHub to Develop AI Models & Store Research Data**
132 -
133 -* **GitHub Repository:** AI model training scripts.
134 -* **GitHub Issues:** Tracks ongoing research questions.
135 -* **GitHub Wiki:** Project documentation & user guides.
136 -
137 -**We Use EBRAINS for Data & Collaboration**
138 -
139 -* **EBRAINS Buckets:** Large-scale neuroimaging and biomarker storage.
140 -* **EBRAINS Jupyter Notebooks:** Cloud-based AI model execution.
141 -* **EBRAINS Wiki:** Research documentation and updates.
142 -
143 -**Join the Project Forum:** [[GitHub Discussions>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]
144 -
145 -----
146 -
147 -**For Additional Documentation:**
148 -
149 -* **GitHub Repository:** [[Neurodiagnoses AI Models>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]]
150 -* **EBRAINS Wiki:** [[Neurodiagnoses Research Collaboration>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]]
151 -
152 -----
153 -
154 -**Neurodiagnoses is Open for Contributions – Join Us Today!**
106 +
workflow neurodiagnoses.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.manuelmenendez
Size
... ... @@ -1,0 +1,1 @@
1 +157.5 KB
Content