Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 17.1
edited by manuelmenendez
on 2025/02/09 13:01
on 2025/02/09 13:01
Change comment:
There is no comment for this version
To version 6.1
edited by manuelmenendez
on 2025/02/01 11:57
on 2025/02/01 11:57
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,154 +1,173 @@ 1 -== **Overview** == 1 +==== **Overview** ==== 2 2 3 - Neurodiagnosesdevelops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility.**3 +This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**. 4 4 5 -This methodology integrates **multi-modal data**, including: 6 -**Genetic data** (whole-genome sequencing, polygenic risk scores). 7 -**Neuroimaging** (MRI, PET, EEG, MEG). 8 -**Neurophysiological data** (EEG-based biomarkers, sleep actigraphy). 9 -**CSF & Blood Biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 5 +---- 10 10 11 - Byapplying**machinelearning models**, Neurodiagnoses generates **structured, explainablediagnostic outputs** to assist **clinical decision-making** and **biomarker-driven patient stratification.**7 +=== **1. Data Integration** === 12 12 13 - ----9 +==== **Data Sources** ==== 14 14 15 - ==**DataIntegration&ExternalDatabases**==11 +**Biomedical Ontologies & Databases:** 16 16 17 -=== **How to Use External Databases in Neurodiagnoses** === 13 +* **Human Phenotype Ontology (HPO)** for symptom annotation. 14 +* **Gene Ontology (GO)** for molecular and cellular processes. 18 18 19 - Neurodiagnosesintegratesdata from multiple **biomedicaland neurologicalresearch databases**. Researchers can follow these steps to **access, prepare, andintegrate**data into the Neurodiagnoses framework.16 +**Dimensionality Reduction and Interpretability:** 20 20 21 -** PotentialDataSources**22 -** Reference:**[[Listof PotentialDatabases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]]18 +* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 19 +* **Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 23 23 24 - ===**RegisterforAccess**===21 +**Neuroimaging & EEG/MEG Data:** 25 25 26 -Each **external database** requires **individual registration** and approval. 27 -✔️ Follow the official **data access guidelines** of each provider. 28 -✔️ Ensure compliance with **ethical approvals** and **data-sharing agreements (DUAs).** 23 +* **MRI volumetric measures** for brain atrophy tracking. 24 +* **EEG functional connectivity patterns** (AI-Mind). 29 29 30 - ===**Download&Prepare Data**===26 +**Clinical & Biomarker Data:** 31 31 32 -Once access is granted, download datasets **following compliance guidelines** and **format requirements** for integration. 28 +* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 29 +* **Sleep monitoring and actigraphy data** (ADIS). 33 33 34 -** SupportedFileFormats**31 +**Federated Learning Integration:** 35 35 36 -* **Tabular Data**: .csv, .tsv 37 -* **Neuroimaging Data**: .nii, .dcm 38 -* **Genomic Data**: .fasta, .vcf 39 -* **Clinical Metadata**: .json, .xml 33 +* **Secure multi-center data harmonization** (PROMINENT). 40 40 41 - **Mandatory Fields for Integration**35 +---- 42 42 43 -|=**Field Name**|=**Description** 44 -|**Subject ID**|Unique patient identifier 45 -|**Diagnosis**|Standardized disease classification 46 -|**Biomarkers**|CSF, plasma, or imaging biomarkers 47 -|**Genetic Data**|Whole-genome or exome sequencing 48 -|**Neuroimaging Metadata**|MRI/PET acquisition parameters 37 +==== **Annotation System for Multi-Modal Data** ==== 49 49 50 - ===**UploadDataoNeurodiagnoses**===39 +To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will: 51 51 52 -**Option 1:** Upload to **EBRAINS Bucket** → [[Neurodiagnoses Data Storage>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]] 53 -**Option 2:** Contribute via **GitHub Repository** → [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]] 41 +* **Assign standardized metadata tags** to diagnostic features. 42 +* **Provide contextual explanations** for AI-based classifications. 43 +* **Track temporal disease progression annotations** to identify long-term trends. 54 54 55 - **For large datasets, please contact project administrators before uploading.**45 +---- 56 56 57 -=== **I ntegrateData intoAI Models** ===47 +=== **2. AI-Based Analysis** === 58 58 59 -Use **Jupyter Notebooks** on EBRAINS for **data preprocessing.** 60 -Standardize data using **harmonization tools.** 61 -Train AI models with **newly integrated datasets.** 49 +==== **Machine Learning & Deep Learning Models** ==== 62 62 63 -**R eference:**[[DataProcessing Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]]51 +**Risk Prediction Models:** 64 64 65 - ----53 +* **LETHE’s cognitive risk prediction model** integrated into the annotation framework. 66 66 67 - ==**AI-PoweredAnnotation &MachineLearning Models**==55 +**Biomarker Classification & Probabilistic Imputation:** 68 68 69 -N eurodiagnosesapplies**advancedmachinelearningmodels**to classify CNS diseases,extractfeatures from **biomarkersandneuroimaging**, andprovide **AI-poweredannotation.**57 +* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. 70 70 71 - ===**AI ModelCategories**===59 +**Neuroimaging Feature Extraction:** 72 72 73 -|=**Model Type**|=**Function**|=**Example Algorithms** 74 -|**Probabilistic Diagnosis**|Assigns probability scores to multiple CNS disorders.|Random Forest, XGBoost, Bayesian Networks 75 -|**Tridimensional Diagnosis**|Classifies disorders based on Etiology, Biomarkers, and Neuroanatomical Correlations.|CNNs, Transformers, Autoencoders 76 -|**Biomarker Prediction**|Predicts missing biomarker values using regression.|KNN Imputation, Bayesian Estimation 77 -|**Neuroimaging Feature Extraction**|Extracts patterns from MRI, PET, EEG.|CNNs, Graph Neural Networks 78 -|**Clinical Decision Support**|Generates AI-driven diagnostic reports.|SHAP Explainability Tools 61 +* **MRI & EEG data** annotated with **neuroanatomical feature labels**. 79 79 80 -** Reference:** [[AIModel Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/models.md]]63 +==== **AI-Powered Annotation System** ==== 81 81 65 +* Uses **SHAP-based interpretability tools** to explain model decisions. 66 +* Generates **automated clinical annotations** in structured reports. 67 +* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). 68 + 82 82 ---- 83 83 84 -== **Clinical Decision Support & Tridimensional Diagnostic Framework** ==71 +=== **3. Diagnostic Framework & Clinical Decision Support** === 85 85 86 - Neurodiagnosesgenerates**structuredAI reports**for clinicians, combining:73 +==== **Tridimensional Diagnostic Axes** ==== 87 87 88 -**Probabilistic Diagnosis:** AI-generated ranking of potential diagnoses. 89 -**Tridimensional Classification:** Standardized diagnostic reports based on: 75 +**Axis 1: Etiology (Pathogenic Mechanisms)** 90 90 91 -1. **Axis 1:** **Etiology** → Genetic, Autoimmune, Prion, Toxic, Vascular. 92 -1. **Axis 2:** **Molecular Markers** → CSF, Neuroinflammation, EEG biomarkers. 93 -1. **Axis 3:** **Neuroanatomoclinical Correlations** → MRI atrophy, PET. 77 +* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 78 +* **AI-assisted annotation** provides **causal interpretations** for clinical use. 94 94 95 -** Reference:** [[TridimensionalClassificationGuide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/classification.md]]80 +**Axis 2: Molecular Markers & Biomarkers** 96 96 82 +* **Integration of CSF, blood, and neuroimaging biomarkers**. 83 +* **Structured annotation** highlights **biological pathways linked to diagnosis**. 84 + 85 +**Axis 3: Neuroanatomoclinical Correlations** 86 + 87 +* **MRI and EEG data** provide anatomical and functional insights. 88 +* **AI-generated progression maps** annotate **brain structure-function relationships**. 89 + 97 97 ---- 98 98 99 -== ** DataSecurity,Compliance&FederatedLearning** ==92 +=== **4. Computational Workflow & Annotation Pipelines** === 100 100 101 -✔ **Privacy-Preserving AI**: Implements **Federated Learning**, ensuring that patient data **never leaves** local institutions. 102 -✔ **Secure Data Access**: Data remains **stored in EBRAINS MIP servers** using **differential privacy techniques.** 103 -✔ **Ethical & GDPR Compliance**: Data-sharing agreements **must be signed** before use. 94 +==== **Data Processing Steps** ==== 104 104 105 -** Reference:** [[DataProtection& Federated Learning>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/security.md]]96 +**Data Ingestion:** 106 106 98 +* **Harmonized datasets** stored in **EBRAINS Bucket**. 99 +* **Preprocessing pipelines** clean and standardize data. 100 + 101 +**Feature Engineering:** 102 + 103 +* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. 104 + 105 +**AI-Generated Annotations:** 106 + 107 +* **Automated tagging** of diagnostic features in **structured reports**. 108 +* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 109 + 110 +**Clinical Decision Support Integration:** 111 + 112 +* **AI-annotated findings** fed into **interactive dashboards**. 113 +* **Clinicians can adjust, validate, and modify annotations**. 114 + 107 107 ---- 108 108 109 -== ** DataProcessing&Integrationwith Clinica.Run** ==117 +=== **5. Validation & Real-World Testing** === 110 110 111 - Neurodiagnoses now supports**Clinica.Run**, an **open-source neuroimaging platform**for **multimodal data processing.**119 +==== **Prospective Clinical Study** ==== 112 112 113 -=== **How It Works** === 121 +* **Multi-center validation** of AI-based **annotations & risk stratifications**. 122 +* **Benchmarking against clinician-based diagnoses**. 123 +* **Real-world testing** of AI-powered **structured reporting**. 114 114 115 -✔ **Neuroimaging Preprocessing**: MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines.** 116 -✔ **Automated Biomarker Extraction**: Extracts volumetric, metabolic, and functional biomarkers. 117 -✔ **Data Security & Compliance**: Clinica.Run is **GDPR & HIPAA-compliant.** 125 +==== **Quality Assurance & Explainability** ==== 118 118 119 -=== **Implementation Steps** === 127 +* **Annotations linked to structured knowledge graphs** for improved transparency. 128 +* **Interactive annotation editor** allows clinicians to validate AI outputs. 120 120 121 -1. Install **Clinica.Run** dependencies. 122 -1. Configure **Clinica.Run pipeline** in clinica_run_config.json. 123 -1. Run **biomarker extraction pipelines** for AI-based diagnostics. 130 +---- 124 124 125 -** Reference:**[[Clinica.Run Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/clinica_run.md]]132 +=== **6. Collaborative Development** === 126 126 134 +The project is **open to contributions** from **researchers, clinicians, and developers**. 135 + 136 +**Key tools include:** 137 + 138 +* **Jupyter Notebooks**: For data analysis and pipeline development. 139 +** Example: **probabilistic imputation** 140 +* **Wiki Pages**: For documenting methods and results. 141 +* **Drive and Bucket**: For sharing code, data, and outputs. 142 +* **Collaboration with related projects**: 143 +** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 144 + 127 127 ---- 128 128 129 -== ** CollaborativeDevelopment & Research** ==147 +=== **7. Tools and Technologies** === 130 130 131 -** We Use GitHub toDevelop AI Models & Store ResearchData**149 +==== **Programming Languages:** ==== 132 132 133 -* **GitHub Repository:** AI model training scripts. 134 -* **GitHub Issues:** Tracks ongoing research questions. 135 -* **GitHub Wiki:** Project documentation & user guides. 151 +* **Python** for AI and data processing. 136 136 137 -** We Use EBRAINS forData & Collaboration**153 +==== **Frameworks:** ==== 138 138 139 -* **EBRAINS Buckets:** Large-scale neuroimaging and biomarker storage. 140 -* **EBRAINS Jupyter Notebooks:** Cloud-based AI model execution. 141 -* **EBRAINS Wiki:** Research documentation and updates. 155 +* **TensorFlow** and **PyTorch** for machine learning. 156 +* **Flask** or **FastAPI** for backend services. 142 142 143 - **Jointhe Project Forum:**[[GitHub Discussions>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]158 +==== **Visualization:** ==== 144 144 145 - ----160 +* **Plotly** and **Matplotlib** for interactive and static visualizations. 146 146 147 -** ForAdditionalDocumentation:**162 +==== **EBRAINS Services:** ==== 148 148 149 -* ** GitHubRepository:**[[NeurodiagnosesAI Models>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]]150 -* ** EBRAINS Wiki:**[[Neurodiagnoses ResearchCollaboration>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]]164 +* **Collaboratory Lab** for running Notebooks. 165 +* **Buckets** for storing large datasets. 151 151 152 152 ---- 153 153 154 -**Neurodiagnoses is Open for Contributions – Join Us Today!** 169 +=== **Why This Matters** === 170 + 171 +* **The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.** 172 +* **It enables real-time tracking of disease progression across the three diagnostic axes.** 173 +* **It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.**