Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 17.1
edited by manuelmenendez
on 2025/02/09 13:01
Change comment: There is no comment for this version
To version 6.1
edited by manuelmenendez
on 2025/02/01 11:57
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,154 +1,173 @@
1 -== **Overview** ==
1 +==== **Overview** ====
2 2  
3 -Neurodiagnoses develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility.**
3 +This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**.
4 4  
5 -This methodology integrates **multi-modal data**, including:
6 -**Genetic data** (whole-genome sequencing, polygenic risk scores).
7 -**Neuroimaging** (MRI, PET, EEG, MEG).
8 -**Neurophysiological data** (EEG-based biomarkers, sleep actigraphy).
9 -**CSF & Blood Biomarkers** (Amyloid-beta, Tau, Neurofilament Light).
5 +----
10 10  
11 -By applying **machine learning models**, Neurodiagnoses generates **structured, explainable diagnostic outputs** to assist **clinical decision-making** and **biomarker-driven patient stratification.**
7 +=== **1. Data Integration** ===
12 12  
13 -----
9 +==== **Data Sources** ====
14 14  
15 -== **Data Integration & External Databases** ==
11 +**Biomedical Ontologies & Databases:**
16 16  
17 -=== **How to Use External Databases in Neurodiagnoses** ===
13 +* **Human Phenotype Ontology (HPO)** for symptom annotation.
14 +* **Gene Ontology (GO)** for molecular and cellular processes.
18 18  
19 -Neurodiagnoses integrates data from multiple **biomedical and neurological research databases**. Researchers can follow these steps to **access, prepare, and integrate** data into the Neurodiagnoses framework.
16 +**Dimensionality Reduction and Interpretability:**
20 20  
21 -**Potential Data Sources**
22 -**Reference:** [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]]
18 +* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**.
19 +* **Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts.
23 23  
24 -=== **Register for Access** ===
21 +**Neuroimaging & EEG/MEG Data:**
25 25  
26 -Each **external database** requires **individual registration** and approval.
27 -✔️ Follow the official **data access guidelines** of each provider.
28 -✔️ Ensure compliance with **ethical approvals** and **data-sharing agreements (DUAs).**
23 +* **MRI volumetric measures** for brain atrophy tracking.
24 +* **EEG functional connectivity patterns** (AI-Mind).
29 29  
30 -=== **Download & Prepare Data** ===
26 +**Clinical & Biomarker Data:**
31 31  
32 -Once access is granted, download datasets **following compliance guidelines** and **format requirements** for integration.
28 +* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light).
29 +* **Sleep monitoring and actigraphy data** (ADIS).
33 33  
34 -**Supported File Formats**
31 +**Federated Learning Integration:**
35 35  
36 -* **Tabular Data**: .csv, .tsv
37 -* **Neuroimaging Data**: .nii, .dcm
38 -* **Genomic Data**: .fasta, .vcf
39 -* **Clinical Metadata**: .json, .xml
33 +* **Secure multi-center data harmonization** (PROMINENT).
40 40  
41 -**Mandatory Fields for Integration**
35 +----
42 42  
43 -|=**Field Name**|=**Description**
44 -|**Subject ID**|Unique patient identifier
45 -|**Diagnosis**|Standardized disease classification
46 -|**Biomarkers**|CSF, plasma, or imaging biomarkers
47 -|**Genetic Data**|Whole-genome or exome sequencing
48 -|**Neuroimaging Metadata**|MRI/PET acquisition parameters
37 +==== **Annotation System for Multi-Modal Data** ====
49 49  
50 -=== **Upload Data to Neurodiagnoses** ===
39 +To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will:
51 51  
52 -**Option 1:** Upload to **EBRAINS Bucket** → [[Neurodiagnoses Data Storage>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]]
53 -**Option 2:** Contribute via **GitHub Repository** → [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]]
41 +* **Assign standardized metadata tags** to diagnostic features.
42 +* **Provide contextual explanations** for AI-based classifications.
43 +* **Track temporal disease progression annotations** to identify long-term trends.
54 54  
55 -**For large datasets, please contact project administrators before uploading.**
45 +----
56 56  
57 -=== **Integrate Data into AI Models** ===
47 +=== **2. AI-Based Analysis** ===
58 58  
59 -Use **Jupyter Notebooks** on EBRAINS for **data preprocessing.**
60 -Standardize data using **harmonization tools.**
61 -Train AI models with **newly integrated datasets.**
49 +==== **Machine Learning & Deep Learning Models** ====
62 62  
63 -**Reference:** [[Data Processing Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]]
51 +**Risk Prediction Models:**
64 64  
65 -----
53 +* **LETHE’s cognitive risk prediction model** integrated into the annotation framework.
66 66  
67 -== **AI-Powered Annotation & Machine Learning Models** ==
55 +**Biomarker Classification & Probabilistic Imputation:**
68 68  
69 -Neurodiagnoses applies **advanced machine learning models** to classify CNS diseases, extract features from **biomarkers and neuroimaging**, and provide **AI-powered annotation.**
57 +* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**.
70 70  
71 -=== **AI Model Categories** ===
59 +**Neuroimaging Feature Extraction:**
72 72  
73 -|=**Model Type**|=**Function**|=**Example Algorithms**
74 -|**Probabilistic Diagnosis**|Assigns probability scores to multiple CNS disorders.|Random Forest, XGBoost, Bayesian Networks
75 -|**Tridimensional Diagnosis**|Classifies disorders based on Etiology, Biomarkers, and Neuroanatomical Correlations.|CNNs, Transformers, Autoencoders
76 -|**Biomarker Prediction**|Predicts missing biomarker values using regression.|KNN Imputation, Bayesian Estimation
77 -|**Neuroimaging Feature Extraction**|Extracts patterns from MRI, PET, EEG.|CNNs, Graph Neural Networks
78 -|**Clinical Decision Support**|Generates AI-driven diagnostic reports.|SHAP Explainability Tools
61 +* **MRI & EEG data** annotated with **neuroanatomical feature labels**.
79 79  
80 -**Reference:** [[AI Model Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/models.md]]
63 +==== **AI-Powered Annotation System** ====
81 81  
65 +* Uses **SHAP-based interpretability tools** to explain model decisions.
66 +* Generates **automated clinical annotations** in structured reports.
67 +* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**).
68 +
82 82  ----
83 83  
84 -== **Clinical Decision Support & Tridimensional Diagnostic Framework** ==
71 +=== **3. Diagnostic Framework & Clinical Decision Support** ===
85 85  
86 -Neurodiagnoses generates **structured AI reports** for clinicians, combining:
73 +==== **Tridimensional Diagnostic Axes** ====
87 87  
88 -**Probabilistic Diagnosis:** AI-generated ranking of potential diagnoses.
89 -**Tridimensional Classification:** Standardized diagnostic reports based on:
75 +**Axis 1: Etiology (Pathogenic Mechanisms)**
90 90  
91 -1. **Axis 1:** **Etiology** → Genetic, Autoimmune, Prion, Toxic, Vascular.
92 -1. **Axis 2:** **Molecular Markers** → CSF, Neuroinflammation, EEG biomarkers.
93 -1. **Axis 3:** **Neuroanatomoclinical Correlations** → MRI atrophy, PET.
77 +* Classification based on **genetic markers, cellular pathways, and environmental risk factors**.
78 +* **AI-assisted annotation** provides **causal interpretations** for clinical use.
94 94  
95 -**Reference:** [[Tridimensional Classification Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/classification.md]]
80 +**Axis 2: Molecular Markers & Biomarkers**
96 96  
82 +* **Integration of CSF, blood, and neuroimaging biomarkers**.
83 +* **Structured annotation** highlights **biological pathways linked to diagnosis**.
84 +
85 +**Axis 3: Neuroanatomoclinical Correlations**
86 +
87 +* **MRI and EEG data** provide anatomical and functional insights.
88 +* **AI-generated progression maps** annotate **brain structure-function relationships**.
89 +
97 97  ----
98 98  
99 -== **Data Security, Compliance & Federated Learning** ==
92 +=== **4. Computational Workflow & Annotation Pipelines** ===
100 100  
101 -✔ **Privacy-Preserving AI**: Implements **Federated Learning**, ensuring that patient data **never leaves** local institutions.
102 -✔ **Secure Data Access**: Data remains **stored in EBRAINS MIP servers** using **differential privacy techniques.**
103 -✔ **Ethical & GDPR Compliance**: Data-sharing agreements **must be signed** before use.
94 +==== **Data Processing Steps** ====
104 104  
105 -**Reference:** [[Data Protection & Federated Learning>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/security.md]]
96 +**Data Ingestion:**
106 106  
98 +* **Harmonized datasets** stored in **EBRAINS Bucket**.
99 +* **Preprocessing pipelines** clean and standardize data.
100 +
101 +**Feature Engineering:**
102 +
103 +* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**.
104 +
105 +**AI-Generated Annotations:**
106 +
107 +* **Automated tagging** of diagnostic features in **structured reports**.
108 +* **Explainability modules (SHAP, LIME)** ensure transparency in predictions.
109 +
110 +**Clinical Decision Support Integration:**
111 +
112 +* **AI-annotated findings** fed into **interactive dashboards**.
113 +* **Clinicians can adjust, validate, and modify annotations**.
114 +
107 107  ----
108 108  
109 -== **Data Processing & Integration with Clinica.Run** ==
117 +=== **5. Validation & Real-World Testing** ===
110 110  
111 -Neurodiagnoses now supports **Clinica.Run**, an **open-source neuroimaging platform** for **multimodal data processing.**
119 +==== **Prospective Clinical Study** ====
112 112  
113 -=== **How It Works** ===
121 +* **Multi-center validation** of AI-based **annotations & risk stratifications**.
122 +* **Benchmarking against clinician-based diagnoses**.
123 +* **Real-world testing** of AI-powered **structured reporting**.
114 114  
115 -✔ **Neuroimaging Preprocessing**: MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines.**
116 -✔ **Automated Biomarker Extraction**: Extracts volumetric, metabolic, and functional biomarkers.
117 -✔ **Data Security & Compliance**: Clinica.Run is **GDPR & HIPAA-compliant.**
125 +==== **Quality Assurance & Explainability** ====
118 118  
119 -=== **Implementation Steps** ===
127 +* **Annotations linked to structured knowledge graphs** for improved transparency.
128 +* **Interactive annotation editor** allows clinicians to validate AI outputs.
120 120  
121 -1. Install **Clinica.Run** dependencies.
122 -1. Configure **Clinica.Run pipeline** in clinica_run_config.json.
123 -1. Run **biomarker extraction pipelines** for AI-based diagnostics.
130 +----
124 124  
125 -**Reference:** [[Clinica.Run Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/clinica_run.md]]
132 +=== **6. Collaborative Development** ===
126 126  
134 +The project is **open to contributions** from **researchers, clinicians, and developers**.
135 +
136 +**Key tools include:**
137 +
138 +* **Jupyter Notebooks**: For data analysis and pipeline development.
139 +** Example: **probabilistic imputation**
140 +* **Wiki Pages**: For documenting methods and results.
141 +* **Drive and Bucket**: For sharing code, data, and outputs.
142 +* **Collaboration with related projects**:
143 +** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment**
144 +
127 127  ----
128 128  
129 -== **Collaborative Development & Research** ==
147 +=== **7. Tools and Technologies** ===
130 130  
131 -**We Use GitHub to Develop AI Models & Store Research Data**
149 +==== **Programming Languages:** ====
132 132  
133 -* **GitHub Repository:** AI model training scripts.
134 -* **GitHub Issues:** Tracks ongoing research questions.
135 -* **GitHub Wiki:** Project documentation & user guides.
151 +* **Python** for AI and data processing.
136 136  
137 -**We Use EBRAINS for Data & Collaboration**
153 +==== **Frameworks:** ====
138 138  
139 -* **EBRAINS Buckets:** Large-scale neuroimaging and biomarker storage.
140 -* **EBRAINS Jupyter Notebooks:** Cloud-based AI model execution.
141 -* **EBRAINS Wiki:** Research documentation and updates.
155 +* **TensorFlow** and **PyTorch** for machine learning.
156 +* **Flask** or **FastAPI** for backend services.
142 142  
143 -**Join the Project Forum:** [[GitHub Discussions>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]
158 +==== **Visualization:** ====
144 144  
145 -----
160 +* **Plotly** and **Matplotlib** for interactive and static visualizations.
146 146  
147 -**For Additional Documentation:**
162 +==== **EBRAINS Services:** ====
148 148  
149 -* **GitHub Repository:** [[Neurodiagnoses AI Models>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]]
150 -* **EBRAINS Wiki:** [[Neurodiagnoses Research Collaboration>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]]
164 +* **Collaboratory Lab** for running Notebooks.
165 +* **Buckets** for storing large datasets.
151 151  
152 152  ----
153 153  
154 -**Neurodiagnoses is Open for Contributions – Join Us Today!**
169 +=== **Why This Matters** ===
170 +
171 +* **The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.**
172 +* **It enables real-time tracking of disease progression across the three diagnostic axes.**
173 +* **It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.**