Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 18.1
edited by manuelmenendez
on 2025/02/13 12:52
on 2025/02/13 12:52
Change comment:
There is no comment for this version
To version 28.1
edited by manuelmenendez
on 2025/03/14 08:31
on 2025/03/14 08:31
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,133 +1,216 @@ 1 - ==**Overview**==1 +**Neurodiagnoses AI** is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. It encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker) **and** Disease Knowledge Transfer (DKT)**, which standardizes disease and biomarker classification across all CNS diseases, facilitating cross-disease AI training. 2 2 3 -Neuro diagnoses develops a tridimensional diagnostic frameworkfor CNS diseases, incorporatingAI-powered annotation tools to improveinterpretability, standardization, and clinical utility. Themethodologyintegrates multi-modal data, including genetic, neuroimaging, neurophysiological, and biomarkerdatasets, and applies machine learning modelstogenerate structured, explainable diagnostic outputs.3 +**Neuromarker: Generalized Biomarker Ontology** 4 4 5 -- ---5 +Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration. 6 6 7 - ==**How to UseExternal Databasesin Neurodiagnoses**==7 +**Recommended Software** 8 8 9 -T o enhancethe accuracyof ourdiagnosticmodels,Neurodiagnoses integratesdata frommultiplebiomedical and neurological researchdatabases.Ifyou area researcher, followthesestepscess, prepare, andintegrate data into theNeurodiagnosesframework.9 +There is a suite of software that can help implement the workflow needed in Neurodiagnoses. Find a list of recommendations [[here>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/recommended_software]]. 10 10 11 - ===**PotentialData Sources**===11 +**Core Biomarker Categories** 12 12 13 -Neurodiagnoses maintainsan updated listofpotentialbiomedical databases relevantto neurodegenerativeiseases.13 +Within the Neurodiagnoses AI framework, biomarkers are categorized as follows: 14 14 15 -* Reference: [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 15 +|=**Category**|=**Description** 16 +|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 17 +|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 18 +|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL, autoantiboides 19 +|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 20 +|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 21 +|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 22 +|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 23 +|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 16 16 17 - ===**1. RegisterforAccess**===25 +**Integrating External Databases into Neurodiagnoses** 18 18 19 - Eachexternaldatabaserequiresdividualregistrationandaccessapproval.Followthe officialguidelinesofeach databaseprovider.27 +To enhance diagnostic precision, Neurodiagnoses AI incorporates data from multiple biomedical and neurological research databases. Researchers can integrate external datasets by following these steps: 20 20 21 - * Ensure that you have completed all ethical approvals and data access agreements before integrating datasets into Neurodiagnoses.22 -* Somerepositoriesrequire a Data UsageAgreement(DUA) beforedownloading sensitive medical data.29 +1. ((( 30 +**Register for Access** 23 23 24 -=== **2. Download & Prepare Data** === 32 +* Each external database requires individual registration and access approval. 33 +* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses. 34 +* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data. 35 +))) 36 +1. ((( 37 +**Download & Prepare Data** 25 25 26 -Once access is granted, download datasets while complying with data usage policies. Ensure that the files meet Neurodiagnoses’ format requirements for smooth integration. 39 +* Download datasets while adhering to database usage policies. 40 +* ((( 41 +Ensure files meet Neurodiagnoses format requirements: 27 27 28 -==== **Supported File Formats** ==== 43 +|=**Data Type**|=**Accepted Formats** 44 +|**Tabular Data**|.csv, .tsv 45 +|**Neuroimaging**|.nii, .dcm 46 +|**Genomic Data**|.fasta, .vcf 47 +|**Clinical Metadata**|.json, .xml 48 +))) 49 +* ((( 50 +**Mandatory Fields for Integration**: 29 29 30 -* Tabular Data: .csv, .tsv 31 -* Neuroimaging Data: .nii, .dcm 32 -* Genomic Data: .fasta, .vcf 33 -* Clinical Metadata: .json, .xml 52 +* Subject ID: Unique patient identifier 53 +* Diagnosis: Standardized disease classification 54 +* Biomarkers: CSF, plasma, or imaging biomarkers 55 +* Genetic Data: Whole-genome or exome sequencing 56 +* Neuroimaging Metadata: MRI/PET acquisition parameters 57 +))) 58 +))) 59 +1. ((( 60 +**Upload Data to Neurodiagnoses** 34 34 35 -==== **Mandatory Fields for Integration** ==== 36 - 37 -|=Field Name|=Description 38 -|Subject ID|Unique patient identifier 39 -|Diagnosis|Standardized disease classification 40 -|Biomarkers|CSF, plasma, or imaging biomarkers 41 -|Genetic Data|Whole-genome or exome sequencing 42 -|Neuroimaging Metadata|MRI/PET acquisition parameters 43 - 44 -=== **3. Upload Data to Neurodiagnoses** === 45 - 46 -Once preprocessed, data can be uploaded to EBRAINS or GitHub. 47 - 48 48 * ((( 49 49 **Option 1: Upload to EBRAINS Bucket** 50 50 51 -* Location: [[EBRAINS Neurodiagnoses Bucket>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]]65 +* Location: EBRAINS Neurodiagnoses Bucket 52 52 * Ensure correct metadata tagging before submission. 53 53 ))) 54 54 * ((( 55 55 **Option 2: Contribute via GitHub Repository** 56 56 57 -* Location: [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]] 58 -* Create a new folder under /data/ and include dataset description. 71 +* Location: GitHub Data Repository 72 +* Create a new folder under /data/ and include a dataset description. 73 +* For large datasets, contact project administrators before uploading. 59 59 ))) 75 +))) 76 +1. ((( 77 +**Integrate Data into AI Models** 60 60 61 -//Note: For large datasets, please contact the project administrators before uploading.// 79 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 80 +* Standardize neuroimaging and biomarker formats using harmonization tools. 81 +* Utilize machine learning models to handle missing data and feature extraction. 82 +* Train AI models with newly integrated patient cohorts. 62 62 63 -=== **4. Integrate Data into AI Models** === 84 +**Reference**: See docs/data_processing.md for detailed instructions. 85 +))) 64 64 65 - Onceuploaded, datasetsmust be harmonizedand formatted before AI model training.87 +**AI-Driven Biomarker Categorization** 66 66 67 - ====**Steps forData Integration** ====89 +Neurodiagnoses employs advanced AI models for biomarker classification: 68 68 69 -* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 70 -* Standardize neuroimaging and biomarker formats using harmonization tools. 71 -* Use machine learning models to handle missing data and feature extraction. 72 -* Train AI models with newly integrated patient cohorts. 73 -* Reference: [[Detailed instructions can be found in docs/data_processing.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]]. 91 +|=**Model Type**|=**Application** 92 +|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 93 +|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 94 +|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 74 74 75 - ----96 +=== **Jupyter Integration with EBRAINS** === 76 76 77 -== ** DatabaseSources Table** ==98 +=== **Overview** === 78 78 79 - ===**Where to Insert This**===100 +Neurodiagnoses Open Source leverages **Jupyter Notebooks from EBRAINS** to facilitate neurodiagnostic research, biomarker analysis, and AI-driven data processing. This integration provides an interactive and reproducible environment for developing machine learning models, analyzing neuroimaging data, and exploring multimodal biomarkers. Jupyter integration in EBRAINS empowers **Neurodiagnoses Open Source** to: ✅ **Analyze MRI, EEG, and biomarker data efficiently**. ✅ **Train machine learning models with high-performance computing**. ✅ **Ensure transparency with interactive explainability tools**. ✅ **Enable collaborative neurodiagnostic research with reproducible notebooks**. 80 80 81 -* GitHub: [[docs/data_sources.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_sources.md]] 82 -* EBRAINS Wiki: Collabs/neurodiagnoses/Data Sources 102 +=== **Key Capabilities of Jupyter in Neurodiagnoses** === 83 83 84 -=== ** KeyDatabases forNeurodiagnoses** ===104 +==== **1. Neuroimaging Analysis (MRI, fMRI, PET)** ==== 85 85 86 -|=Database|=Focus Area|=Data Type|=Access Link 87 -|ADNI|Alzheimer's Disease|MRI, PET, CSF, cognitive tests|ADNI 88 -|PPMI|Parkinson’s Disease|Imaging, biospecimens|[[PPMI>>url:https://www.ppmi-info.org/]] 89 -|GP2|Genetic Data for PD|Whole-genome sequencing|[[GP2>>url:https://gp2.org/]] 90 -|Enroll-HD|Huntington’s Disease|Clinical, genetic, imaging|[[Enroll-HD>>url:https://enroll-hd.org/]] 91 -|GAAIN|Alzheimer's & Cognitive Decline|Multi-source data aggregation|[[GAAIN>>url:https://www.gaain.org/]] 92 -|UK Biobank|Population-wide studies|Genetic, imaging, health records|[[UK Biobank>>url:https://www.ukbiobank.ac.uk/]] 93 -|DPUK|Dementia & Aging|Imaging, genetics, lifestyle factors|[[DPUK>>url:https://www.dementiasplatform.uk/]] 94 -|PRION Registry|Prion Diseases|Clinical and genetic data|[[PRION Registry>>url:https://www.prionalliance.org/]] 95 -|DECIPHER|Rare Genetic Disorders|Genomic variants|DECIPHER 106 +* **Preprocessing Pipelines:** 107 +** Use **Nipype, NiLearn, ANTs, and FreeSurfer** for structural and functional MRI analysis. 108 +** Skull stripping, segmentation, and registration of MRI scans. 109 +** Entropy-based slice selection for training deep learning models. 110 +* **Deep Learning for Neuroimaging:** 111 +** Implement **CNN-based models (ResNet, VGG16, Autoencoders)** for biomarker extraction. 112 +** Feature-based classification of **Alzheimer’s, Parkinson’s, and MCI** from neuroimaging data. 96 96 97 - Ifyouknowarelevantdataset,submit a proposal in [[GitHubIssues>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]].114 +==== **2. EEG and MEG Signal Processing** ==== 98 98 99 ----- 116 +* **Data Preprocessing & Artifact Removal:** 117 +** Use **MNE-Python** for filtering, ICA-based artifact rejection, and time-series normalization. 118 +** Extract frequency and time-domain features from EEG/MEG signals. 119 +* **Feature Engineering & Connectivity Analysis:** 120 +** Functional connectivity analysis using **coherence and phase synchronization metrics**. 121 +** Graph-theory-based EEG biomarkers for neurodegenerative disease classification. 122 +* **Deep Learning for EEG Analysis:** 123 +** Train LSTMs and CNNs for automatic EEG-based classification of MCI and cognitive decline. 100 100 101 -== ** Collaboration&Partnerships** ==125 +==== **3. Machine Learning for Biomarker Discovery** ==== 102 102 103 -=== **Where to Insert This** === 127 +* **SHAP-based Explainability for Biomarkers:** 128 +** Use **Random Forest + SHAP** to rank the most predictive CSF, blood, and imaging biomarkers. 129 +** Generate SHAP summary plots to interpret the impact of individual biomarkers. 130 +* **Multi-Modal Feature Selection:** 131 +** Implement **Anchor-Graph Feature Selection** to combine MRI, EEG, and CSF data. 132 +** PCA and autoencoders for dimensionality reduction and feature extraction. 133 +* **Automated Risk Prediction Models:** 134 +** Train ensemble models combining **deep learning and classical ML algorithms**. 135 +** Apply **subject-level cross-validation** to prevent data leakage and ensure reproducibility. 104 104 105 -* GitHub: [[docs/collaboration.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/collaboration.md]] 106 -* EBRAINS Wiki: Collabs/neurodiagnoses/Collaborations 137 +==== **4. Computational Simulations & Virtual Brain Models** ==== 107 107 108 -=== **Partnering with Data Providers** === 139 +* **Integration with The Virtual Brain (TVB):** 140 +** Simulate large-scale brain networks based on individual neuroimaging data. 141 +** Model the effect of neurodegenerative progression on brain activity. 142 +* **Cortical and Subcortical Connectivity Analysis:** 143 +** Generate connectivity matrices using diffusion MRI and functional MRI correlations. 144 +** Validate computational simulations with real patient data from EBRAINS datasets. 109 109 110 - Beyondusingexistingdatasets,Neurodiagnoses seeks partnerships with datarepositoriesto:146 +==== **5. Interactive Data Visualization & Reporting** ==== 111 111 112 -* Enable direct API-based data integration for real-time processing. 148 +* **Dynamic Plots & Dashboards:** 149 +** Use **Matplotlib, Seaborn, Plotly** for interactive visualizations of biomarkers. 150 +** Implement real-time MRI slice rendering and EEG signal visualization. 151 +* **Automated Report Generation:** 152 +** Generate **Jupyter-based PDF reports** summarizing key findings. 153 +** Export analysis results in JSON, CSV, and interactive web dashboards. 154 + 155 +=== **How to Use Neurodiagnoses with Jupyter in EBRAINS** === 156 + 157 +==== **1. Access EBRAINS Jupyter Environment** ==== 158 + 159 +1. Create an **EBRAINS account** at [[EBRAINS.eu>>url:https://ebrains.eu/]]. 160 +1. Navigate to the **Collaboratory** and open the Jupyter Lab interface. 161 +1. Clone the Neurodiagnoses repository: 162 + 163 +{{{git clone https://github.com/neurodiagnoses 164 +cd neurodiagnoses 165 +pip install -r requirements.txt 166 +}}} 167 + 168 +==== **2. Run Prebuilt Neurodiagnoses Notebooks** ==== 169 + 170 +1. Open the **notebooks/** directory inside Jupyter. 171 +1. Run any of the available notebooks: 172 +1*. mri_biomarker_analysis.ipynb → Extracts MRI-based biomarkers. 173 +1*. eeg_preprocessing.ipynb → Cleans and processes EEG signals. 174 +1*. shap_biomarker_explainability.ipynb → Visualizes biomarker importance. 175 +1*. disease_risk_prediction.ipynb → Runs ML models for disease classification. 176 + 177 +==== **3. Train Custom AI Models on EBRAINS HPC Resources** ==== 178 + 179 +* Use EBRAINS **GPU and HPC clusters** for deep learning training: 180 + 181 +{{{from neurodiagnoses.models import train_cnn_model 182 +train_cnn_model(data_path='data/mri/', model_type='ResNet50') 183 +}}} 184 +* Save trained models for deployment: 185 + 186 +{{{model.save('models/neurodiagnoses_cnn.h5') 187 +}}} 188 + 189 +For further developments, contribute to the **[[Neurodiagnoses GitHub Repository>>url:https://github.com/neurodiagnoses]]**. 190 + 191 +**Collaboration & Partnerships** 192 + 193 +Neurodiagnoses actively seeks partnerships with data providers to: 194 + 195 +* Enable API-based data integration for real-time processing. 113 113 * Co-develop harmonized AI-ready datasets with standardized annotations. 114 114 * Secure funding opportunities through joint grant applications. 115 115 116 - ===**Interested in Partnering?**===199 +**Interested in Partnering?** 117 117 118 118 If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 119 119 120 -* 203 +**Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 121 121 122 - ----205 +**Final Notes** 123 123 124 - ==**Final Notes**==207 +Neurodiagnoses AI is committed to advancing the integration of artificial intelligence in neurodiagnostic processes. By continuously expanding our data ecosystem and incorporating standardized biomarker classifications through the Neuromarker ontology, we aim to enhance cross-disease AI training and improve diagnostic accuracy across neurodegenerative disorders. 125 125 126 - Neurodiagnosescontinuously expands itsdatacosystemtosupportAI-drivenclinicaldecision-making. Researchersand institutions areencouragedtocontributenewdatasetsthodologies.209 +We encourage researchers and institutions to contribute new datasets and methodologies to further enrich this collaborative platform. Your participation is vital in driving innovation and fostering a deeper understanding of complex neurological conditions. 127 127 128 -For additional technical documentation: 211 +**For additional technical documentation and collaboration opportunities:** 129 129 130 -* [[GitHub Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]]131 -* [[EBRAINS Collaboration Page>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]]213 +* **GitHub Repository:** [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]] 214 +* **EBRAINS Collaboration Page:** [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]] 132 132 133 -If you e xperience issues integratingdata, open a[[GitHub Issue>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]]or consulttheEBRAINSNeurodiagnosesForum.216 +If you encounter any issues during data integration or have suggestions for improvement, please open a GitHub Issue or consult the EBRAINS Neurodiagnoses Forum. Together, we can advance the field of neurodiagnostics and contribute to better patient outcomes.
- workflow neurodiagnoses.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.manuelmenendez - Size
-
... ... @@ -1,0 +1,1 @@ 1 +157.5 KB - Content