Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 18.1
edited by manuelmenendez
on 2025/02/13 12:52
Change comment: There is no comment for this version
To version 4.3
edited by manuelmenendez
on 2025/01/29 19:11
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,133 +1,109 @@
1 -== **Overview** ==
1 +=== **Overview** ===
2 2  
3 -Neurodiagnoses develops a tridimensional diagnostic framework for CNS diseases, incorporating AI-powered annotation tools to improve interpretability, standardization, and clinical utility. The methodology integrates multi-modal data, including genetic, neuroimaging, neurophysiological, and biomarker datasets, and applies machine learning models to generate structured, explainable diagnostic outputs.
3 +This section describes the step-by-step process used in the **Neurodiagnoses** project to develop a novel diagnostic framework for neurological diseases. The methodology integrates artificial intelligence (AI), biomedical ontologies, and computational neuroscience to create a structured, interpretable, and scalable diagnostic system.
4 4  
5 5  ----
6 6  
7 -== **How to Use External Databases in Neurodiagnoses** ==
7 +=== **1. Data Integration** ===
8 8  
9 -To enhance the accuracy of our diagnostic models, Neurodiagnoses integrates data from multiple biomedical and neurological research databases. If you are a researcher, follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework.
9 +==== **Data Sources** ====
10 10  
11 -=== **Potential Data Sources** ===
11 +* **Biomedical Ontologies**:
12 +** Human Phenotype Ontology (HPO) for phenotypic abnormalities.
13 +** Gene Ontology (GO) for molecular and cellular processes.
14 +* **Neuroimaging Datasets**:
15 +** Example: Alzheimer’s Disease Neuroimaging Initiative (ADNI), OpenNeuro.
16 +* **Clinical and Biomarker Data**:
17 +** Anonymized clinical reports, molecular biomarkers, and test results.
12 12  
13 -Neurodiagnoses maintains an updated list of potential biomedical databases relevant to neurodegenerative diseases.
14 14  
15 -* Reference: [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]]
20 +==== **Data Preprocessing** ====
16 16  
17 -=== **1. Register for Access** ===
22 +1. **Standardization**: Ensure all data sources are normalized to a common format.
23 +1. **Feature Selection**: Identify relevant features for diagnosis (e.g., biomarkers, imaging scores).
24 +1. **Data Cleaning**: Handle missing values and remove duplicates.
18 18  
19 -Each external database requires individual registration and access approval. Follow the official guidelines of each database provider.
26 +----
20 20  
21 -* Ensure that you have completed all ethical approvals and data access agreements before integrating datasets into Neurodiagnoses.
22 -* Some repositories require a Data Usage Agreement (DUA) before downloading sensitive medical data.
28 +=== **2. AI-Based Analysis** ===
23 23  
24 -=== **2. Download & Prepare Data** ===
30 +==== **Model Development** ====
25 25  
26 -Once access is granted, download datasets while complying with data usage policies. Ensure that the files meet Neurodiagnoses’ format requirements for smooth integration.
32 +* **Embedding Models**: Use pre-trained models like BioBERT or BioLORD for text data.
33 +* **Classification Models**:
34 +** Algorithms: Random Forest, Support Vector Machines (SVM), or neural networks.
35 +** Purpose: Predict the likelihood of specific neurological conditions based on input data.
27 27  
28 -==== **Supported File Formats** ====
37 +==== **Dimensionality Reduction and Interpretability** ====
29 29  
30 -* Tabular Data: .csv, .tsv
31 -* Neuroimaging Data: .nii, .dcm
32 -* Genomic Data: .fasta, .vcf
33 -* Clinical Metadata: .json, .xml
39 +* Leverage [[DEIBO>>https://drive.ebrains.eu/f/8d7157708cde4b258db0/]] (Data-driven Embedding Interpretation Based on Ontologies) to connect model dimensions to ontology concepts.
40 +* Evaluate interpretability using metrics like the Area Under the Interpretability Curve (AUIC).
34 34  
35 -==== **Mandatory Fields for Integration** ====
42 +----
36 36  
37 -|=Field Name|=Description
38 -|Subject ID|Unique patient identifier
39 -|Diagnosis|Standardized disease classification
40 -|Biomarkers|CSF, plasma, or imaging biomarkers
41 -|Genetic Data|Whole-genome or exome sequencing
42 -|Neuroimaging Metadata|MRI/PET acquisition parameters
44 +=== **3. Diagnostic Framework** ===
43 43  
44 -=== **3. Upload Data to Neurodiagnoses** ===
46 +==== **Axes of Diagnosis** ====
45 45  
46 -Once preprocessed, data can be uploaded to EBRAINS or GitHub.
48 +The framework organizes diagnostic data into three axes:
47 47  
48 -* (((
49 -**Option 1: Upload to EBRAINS Bucket**
50 +1. **Etiology**: Genetic and environmental risk factors.
51 +1. **Molecular Markers**: Biomarkers such as amyloid-beta, tau, and alpha-synuclein.
52 +1. **Neuroanatomical Correlations**: Results from neuroimaging (e.g., MRI, PET).
50 50  
51 -* Location: [[EBRAINS Neurodiagnoses Bucket>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]]
52 -* Ensure correct metadata tagging before submission.
53 -)))
54 -* (((
55 -**Option 2: Contribute via GitHub Repository**
54 +==== **Recommendation System** ====
56 56  
57 -* Location: [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]]
58 -* Create a new folder under /data/ and include dataset description.
59 -)))
56 +* Suggests additional tests or biomarkers if gaps are detected in the data.
57 +* Prioritizes tests based on clinical impact and cost-effectiveness.
60 60  
61 -//Note: For large datasets, please contact the project administrators before uploading.//
59 +----
62 62  
63 -=== **4. Integrate Data into AI Models** ===
61 +=== **4. Computational Workflow** ===
64 64  
65 -Once uploaded, datasets must be harmonized and formatted before AI model training.
63 +1. **Data Loading**: Import data from storage (Drive or Bucket).
64 +1. **Feature Engineering**: Generate derived features from the raw data.
65 +1. **Model Training**:
66 +1*. Split data into training, validation, and test sets.
67 +1*. Train models with cross-validation to ensure robustness.
68 +1. **Evaluation**:
69 +1*. Metrics: Accuracy, F1-Score, AUIC for interpretability.
70 +1*. Compare against baseline models and domain benchmarks.
66 66  
67 -==== **Steps for Data Integration** ====
68 -
69 -* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts.
70 -* Standardize neuroimaging and biomarker formats using harmonization tools.
71 -* Use machine learning models to handle missing data and feature extraction.
72 -* Train AI models with newly integrated patient cohorts.
73 -* Reference: [[Detailed instructions can be found in docs/data_processing.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]].
74 -
75 75  ----
76 76  
77 -== **Database Sources Table** ==
74 +=== **5. Validation** ===
78 78  
79 -=== **Where to Insert This** ===
76 +==== **Internal Validation** ====
80 80  
81 -* GitHub: [[docs/data_sources.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_sources.md]]
82 -* EBRAINS Wiki: Collabs/neurodiagnoses/Data Sources
78 +* Test the system using simulated datasets and known clinical cases.
79 +* Fine-tune models based on validation results.
83 83  
84 -=== **Key Databases for Neurodiagnoses** ===
81 +==== **External Validation** ====
85 85  
86 -|=Database|=Focus Area|=Data Type|=Access Link
87 -|ADNI|Alzheimer's Disease|MRI, PET, CSF, cognitive tests|ADNI
88 -|PPMI|Parkinson’s Disease|Imaging, biospecimens|[[PPMI>>url:https://www.ppmi-info.org/]]
89 -|GP2|Genetic Data for PD|Whole-genome sequencing|[[GP2>>url:https://gp2.org/]]
90 -|Enroll-HD|Huntington’s Disease|Clinical, genetic, imaging|[[Enroll-HD>>url:https://enroll-hd.org/]]
91 -|GAAIN|Alzheimer's & Cognitive Decline|Multi-source data aggregation|[[GAAIN>>url:https://www.gaain.org/]]
92 -|UK Biobank|Population-wide studies|Genetic, imaging, health records|[[UK Biobank>>url:https://www.ukbiobank.ac.uk/]]
93 -|DPUK|Dementia & Aging|Imaging, genetics, lifestyle factors|[[DPUK>>url:https://www.dementiasplatform.uk/]]
94 -|PRION Registry|Prion Diseases|Clinical and genetic data|[[PRION Registry>>url:https://www.prionalliance.org/]]
95 -|DECIPHER|Rare Genetic Disorders|Genomic variants|DECIPHER
83 +* Collaborate with research institutions and hospitals to test the system in real-world settings.
84 +* Use anonymized patient data to ensure privacy compliance.
96 96  
97 -If you know a relevant dataset, submit a proposal in [[GitHub Issues>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]].
98 -
99 99  ----
100 100  
101 -== **Collaboration & Partnerships** ==
88 +=== **6. Collaborative Development** ===
102 102  
103 -=== **Where to Insert This** ===
90 +The project is open to contributions from researchers, clinicians, and developers. Key tools include:
104 104  
105 -* GitHub: [[docs/collaboration.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/collaboration.md]]
106 -* EBRAINS Wiki: Collabs/neurodiagnoses/Collaborations
92 +* **Jupyter Notebooks**: For data analysis and pipeline development.
93 +** Example: [[probabilistic imputation>>https://drive.ebrains.eu/f/4f69ab52f7734ef48217/]]
94 +* **Wiki Pages**: For documenting methods and results.
95 +* **Drive and Bucket**: For sharing code, data, and outputs.
96 +* **Collaboration with related projects: **For instance: [[//Beyond the hype: AI in dementia – from early risk detection to disease treatment//>>https://www.lethe-project.eu/beyond-the-hype-ai-in-dementia-from-early-risk-detection-to-disease-treatment/]]
107 107  
108 -=== **Partnering with Data Providers** ===
109 -
110 -Beyond using existing datasets, Neurodiagnoses seeks partnerships with data repositories to:
111 -
112 -* Enable direct API-based data integration for real-time processing.
113 -* Co-develop harmonized AI-ready datasets with standardized annotations.
114 -* Secure funding opportunities through joint grant applications.
115 -
116 -=== **Interested in Partnering?** ===
117 -
118 -If you represent a research consortium or database provider, reach out to explore data-sharing agreements.
119 -
120 -* Contact: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]
121 -
122 122  ----
123 123  
124 -== **Final Notes** ==
100 +=== **7. Tools and Technologies** ===
125 125  
126 -Neurodiagnoses continuously expands its data ecosystem to support AI-driven clinical decision-making. Researchers and institutions are encouraged to contribute new datasets and methodologies.
127 -
128 -For additional technical documentation:
129 -
130 -* [[GitHub Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]]
131 -* [[EBRAINS Collaboration Page>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]]
132 -
133 -If you experience issues integrating data, open a [[GitHub Issue>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]] or consult the EBRAINS Neurodiagnoses Forum.
102 +* **Programming Languages**: Python for AI and data processing.
103 +* **Frameworks**:
104 +** TensorFlow and PyTorch for machine learning.
105 +** Flask or FastAPI for backend services.
106 +* **Visualization**: Plotly and Matplotlib for interactive and static visualizations.
107 +* **EBRAINS Services**:
108 +** Collaboratory Lab for running Notebooks.
109 +** Buckets for storing large datasets.