Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 19.1
edited by manuelmenendez
on 2025/02/14 13:57
on 2025/02/14 13:57
Change comment:
There is no comment for this version
To version 24.1
edited by manuelmenendez
on 2025/02/15 12:57
on 2025/02/15 12:57
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,207 +1,117 @@ 1 -** #Neurodiagnoses AI:Multimodal AIfor NeurodiagnosticPredictions**1 +**Neurodiagnoses AI** is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. Building upon the Florey Dementia Index (FDI) methodology, it now encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)**, which standardizes biomarker classification across all neurodegenerative diseases, facilitating cross-disease AI training. 2 2 3 -## **Project Overview** 4 -Neurodiagnoses AI implements AI-driven diagnostic and prognostic models for central nervous system (CNS) disorders, adapting the Florey Dementia Index (FDI) methodology to a broader set of neurological conditions. The approach integrates **multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics) and employs **machine learning models** to provide **explainable, real-time diagnostic insights**.## 3 +**Neuromarker: Generalized Biomarker Ontology** 5 5 6 -## **How to Use External Databases in Neurodiagnoses** 7 -To enhance diagnostic accuracy, Neurodiagnoses integrates data from multiple biomedical and neurological research databases. Researchers can follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework.## 5 +Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration. 8 8 9 -### **Potential Data Sources** 10 -Neurodiagnoses maintains an updated list of potential biomedical databases relevant to neurodegenerative diseases. ## 7 +**Core Biomarker Categories** 11 11 12 -**Reference: List of Potential Databases** 13 -- **ADNI**: Alzheimer's Disease data ([ADNI](https://adni.loni.usc.edu)) 14 -- **PPMI**: Parkinson’s Disease Imaging and biospecimens ([PPMI](https://www.ppmi-info.org)) 15 -- **GP2**: Whole-genome sequencing for PD ([GP2](https://gp2.org)) 16 -- **Enroll-HD**: Huntington’s Disease Clinical and genetic data ([Enroll-HD](https://www.enroll-hd.org)) 17 -- **GAAIN**: Multi-source Alzheimer’s data aggregation ([GAAIN](https://gaain.org)) 18 -- **UK Biobank**: Population-wide genetic, imaging, and health records ([UK Biobank](https://www.ukbiobank.ac.uk)) 19 -- **DPUK**: Dementia and Aging data ([DPUK](https://www.dementiasplatform.uk)) 20 -- **PRION Registry**: Prion Diseases clinical and genetic data ([PRION Registry](https://prionregistry.org)) 21 -- **DECIPHER**: Rare genetic disorder genomic variants ([DECIPHER](https://decipher.sanger.ac.uk)) 9 +Within the Neurodiagnoses AI framework, biomarkers are categorized as follows: 22 22 23 -### **1. Register for Access** 24 -- Each external database requires **individual registration** and access approval. 25 -- Ensure compliance with **ethical approvals** and **data usage agreements** before integrating datasets into Neurodiagnoses. 26 -- Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data.## 11 +|=**Category**|=**Description** 12 +|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 13 +|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 14 +|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL, autoantiboides 15 +|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 16 +|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 17 +|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 18 +|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 19 +|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 27 27 28 -### **2. Download & Prepare Data** 29 -- Download datasets while adhering to database usage policies. 30 -- Ensure files meet **Neurodiagnoses format requirements**: 31 - - **Tabular Data**: `.csv`, `.tsv` 32 - - **Neuroimaging Data**: `.nii`, `.dcm` 33 - - **Genomic Data**: `.fasta`, `.vcf` 34 - - **Clinical Metadata**: `.json`, `.xml`## 21 +**Integrating External Databases into Neurodiagnoses** 35 35 36 -- **Mandatory Fields for Integration**: 37 - - **Subject ID**: Unique patient identifier 38 - - **Diagnosis**: Standardized disease classification 39 - - **Biomarkers**: CSF, plasma, or imaging biomarkers 40 - - **Genetic Data**: Whole-genome or exome sequencing 41 - - **Neuroimaging Metadata**: MRI/PET acquisition parameters 23 +To enhance diagnostic precision, Neurodiagnoses AI incorporates data from multiple biomedical and neurological research databases. Researchers can integrate external datasets by following these steps: 42 42 43 -### **3. Upload Data to Neurodiagnoses** 44 -**Option 1: Upload to EBRAINS Bucket** 45 -- Location: **EBRAINS Neurodiagnoses Bucket** 46 -- Ensure correct **metadata tagging** before submission.## 25 +1. ((( 26 +**Register for Access** 47 47 48 - **Option 2: Contribute via GitHub Repository** 49 -- Location: **GitHub Data Repository** 50 -- Create a new folder under `/data/` and include a **dataset description**. 51 -- For large datasets, contact project administrators before uploading. 28 +* Each external database requires individual registration and access approval. 29 +* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses. 30 +* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data. 31 +))) 32 +1. ((( 33 +**Download & Prepare Data** 52 52 53 -### **4. Integrate Data into AI Models** 54 -- Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**. 55 -- Standardize **neuroimaging and biomarker formats** using harmonization tools. 56 -- Use **machine learning models** to handle missing data and feature extraction. 57 -- Train AI models with **newly integrated patient cohorts**.## 35 +* Download datasets while adhering to database usage policies. 36 +* ((( 37 +Ensure files meet Neurodiagnoses format requirements: 58 58 59 -**Reference**: See `docs/data_processing.md` for detailed instructions. 39 +|=**Data Type**|=**Accepted Formats** 40 +|**Tabular Data**|.csv, .tsv 41 +|**Neuroimaging**|.nii, .dcm 42 +|**Genomic Data**|.fasta, .vcf 43 +|**Clinical Metadata**|.json, .xml 44 +))) 45 +* ((( 46 +**Mandatory Fields for Integration**: 60 60 61 -## **Collaboration & Partnerships**## 62 -# **Partnering with Data Providers** 63 -Neurodiagnoses seeks partnerships with data repositories to: 64 -- Enable **API-based data integration** for real-time processing. 65 -- Co-develop **harmonized AI-ready datasets** with standardized annotations. 66 -- Secure **funding opportunities** through joint grant applications. 48 +* Subject ID: Unique patient identifier 49 +* Diagnosis: Standardized disease classification 50 +* Biomarkers: CSF, plasma, or imaging biomarkers 51 +* Genetic Data: Whole-genome or exome sequencing 52 +* Neuroimaging Metadata: MRI/PET acquisition parameters 53 +))) 54 +))) 55 +1. ((( 56 +**Upload Data to Neurodiagnoses** 67 67 68 -**Interested in Partnering?** 69 -- If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 70 -- **Contact**: info@neurodiagnoses.com 71 - 72 -## **Final Notes** 73 -Neurodiagnoses continuously expands its data ecosystem to support AI-driven clinical decision-making. Researchers and institutions are encouraged to contribute **new datasets and methodologies**.## 74 - 75 -For additional technical documentation: 76 -- **GitHub Repository**: [Neurodiagnoses GitHub](https://github.com/neurodiagnoses) 77 -- **EBRAINS Collaboration Page**: [EBRAINS Neurodiagnoses](https://ebrains.eu/collabs/neurodiagnoses) 78 - 79 -If you experience issues integrating data, **open a GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**. 80 - 81 -== **How to Use External Databases in Neurodiagnoses** == 82 - 83 -To enhance the accuracy of our diagnostic models, Neurodiagnoses integrates data from multiple biomedical and neurological research databases. If you are a researcher, follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework. 84 - 85 -=== **Potential Data Sources** === 86 - 87 -Neurodiagnoses maintains an updated list of potential biomedical databases relevant to neurodegenerative diseases. 88 - 89 -* Reference: [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 90 - 91 -=== **1. Register for Access** === 92 - 93 -Each external database requires individual registration and access approval. Follow the official guidelines of each database provider. 94 - 95 -* Ensure that you have completed all ethical approvals and data access agreements before integrating datasets into Neurodiagnoses. 96 -* Some repositories require a Data Usage Agreement (DUA) before downloading sensitive medical data. 97 - 98 -=== **2. Download & Prepare Data** === 99 - 100 -Once access is granted, download datasets while complying with data usage policies. Ensure that the files meet Neurodiagnoses’ format requirements for smooth integration. 101 - 102 -==== **Supported File Formats** ==== 103 - 104 -* Tabular Data: .csv, .tsv 105 -* Neuroimaging Data: .nii, .dcm 106 -* Genomic Data: .fasta, .vcf 107 -* Clinical Metadata: .json, .xml 108 - 109 -==== **Mandatory Fields for Integration** ==== 110 - 111 -|=Field Name|=Description 112 -|Subject ID|Unique patient identifier 113 -|Diagnosis|Standardized disease classification 114 -|Biomarkers|CSF, plasma, or imaging biomarkers 115 -|Genetic Data|Whole-genome or exome sequencing 116 -|Neuroimaging Metadata|MRI/PET acquisition parameters 117 - 118 -=== **3. Upload Data to Neurodiagnoses** === 119 - 120 -Once preprocessed, data can be uploaded to EBRAINS or GitHub. 121 - 122 122 * ((( 123 123 **Option 1: Upload to EBRAINS Bucket** 124 124 125 -* Location: [[EBRAINS Neurodiagnoses Bucket>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]]61 +* Location: EBRAINS Neurodiagnoses Bucket 126 126 * Ensure correct metadata tagging before submission. 127 127 ))) 128 128 * ((( 129 129 **Option 2: Contribute via GitHub Repository** 130 130 131 -* Location: [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]] 132 -* Create a new folder under /data/ and include dataset description. 67 +* Location: GitHub Data Repository 68 +* Create a new folder under /data/ and include a dataset description. 69 +* For large datasets, contact project administrators before uploading. 133 133 ))) 71 +))) 72 +1. ((( 73 +**Integrate Data into AI Models** 134 134 135 -//Note: For large datasets, please contact the project administrators before uploading.// 136 - 137 -=== **4. Integrate Data into AI Models** === 138 - 139 -Once uploaded, datasets must be harmonized and formatted before AI model training. 140 - 141 -==== **Steps for Data Integration** ==== 142 - 143 143 * Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 144 144 * Standardize neuroimaging and biomarker formats using harmonization tools. 145 -* U se machine learning models to handle missing data and feature extraction.77 +* Utilize machine learning models to handle missing data and feature extraction. 146 146 * Train AI models with newly integrated patient cohorts. 147 -* Reference: [[Detailed instructions can be found in docs/data_processing.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]]. 148 148 149 ----- 80 +**Reference**: See docs/data_processing.md for detailed instructions. 81 +))) 150 150 151 - ==**DatabaseSourcesTable**==83 +**AI-Driven Biomarker Categorization** 152 152 153 - === **WheretoInsertThis**===85 +Neurodiagnoses employs advanced AI models for biomarker classification: 154 154 155 -* GitHub: [[docs/data_sources.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_sources.md]] 156 -* EBRAINS Wiki: Collabs/neurodiagnoses/Data Sources 87 +|=**Model Type**|=**Application** 88 +|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 89 +|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 90 +|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 157 157 158 - ===**Key Databases forNeurodiagnoses**===92 +**Collaboration & Partnerships** 159 159 160 -|=Database|=Focus Area|=Data Type|=Access Link 161 -|ADNI|Alzheimer's Disease|MRI, PET, CSF, cognitive tests|ADNI 162 -|PPMI|Parkinson’s Disease|Imaging, biospecimens|[[PPMI>>url:https://www.ppmi-info.org/]] 163 -|GP2|Genetic Data for PD|Whole-genome sequencing|[[GP2>>url:https://gp2.org/]] 164 -|Enroll-HD|Huntington’s Disease|Clinical, genetic, imaging|[[Enroll-HD>>url:https://enroll-hd.org/]] 165 -|GAAIN|Alzheimer's & Cognitive Decline|Multi-source data aggregation|[[GAAIN>>url:https://www.gaain.org/]] 166 -|UK Biobank|Population-wide studies|Genetic, imaging, health records|[[UK Biobank>>url:https://www.ukbiobank.ac.uk/]] 167 -|DPUK|Dementia & Aging|Imaging, genetics, lifestyle factors|[[DPUK>>url:https://www.dementiasplatform.uk/]] 168 -|PRION Registry|Prion Diseases|Clinical and genetic data|[[PRION Registry>>url:https://www.prionalliance.org/]] 169 -|DECIPHER|Rare Genetic Disorders|Genomic variants|DECIPHER 94 +Neurodiagnoses actively seeks partnerships with data providers to: 170 170 171 -If you know a relevant dataset, submit a proposal in [[GitHub Issues>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]]. 172 - 173 ----- 174 - 175 -== **Collaboration & Partnerships** == 176 - 177 -=== **Where to Insert This** === 178 - 179 -* GitHub: [[docs/collaboration.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/collaboration.md]] 180 -* EBRAINS Wiki: Collabs/neurodiagnoses/Collaborations 181 - 182 -=== **Partnering with Data Providers** === 183 - 184 -Beyond using existing datasets, Neurodiagnoses seeks partnerships with data repositories to: 185 - 186 -* Enable direct API-based data integration for real-time processing. 96 +* Enable API-based data integration for real-time processing. 187 187 * Co-develop harmonized AI-ready datasets with standardized annotations. 188 188 * Secure funding opportunities through joint grant applications. 189 189 190 - ===**Interested in Partnering?**===100 +**Interested in Partnering?** 191 191 192 192 If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 193 193 194 -* 104 +**Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 195 195 196 - ----106 +**Final Notes** 197 197 198 - ==**Final Notes**==108 +Neurodiagnoses AI is committed to advancing the integration of artificial intelligence in neurodiagnostic processes. By continuously expanding our data ecosystem and incorporating standardized biomarker classifications through the Neuromarker ontology, we aim to enhance cross-disease AI training and improve diagnostic accuracy across neurodegenerative disorders. 199 199 200 - Neurodiagnosescontinuously expands itsdatacosystemtosupportAI-drivenclinicaldecision-making. Researchersand institutions areencouragedtocontributenewdatasetsthodologies.110 +We encourage researchers and institutions to contribute new datasets and methodologies to further enrich this collaborative platform. Your participation is vital in driving innovation and fostering a deeper understanding of complex neurological conditions. 201 201 202 -For additional technical documentation: 112 +**For additional technical documentation and collaboration opportunities:** 203 203 204 -* [[GitHub Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]]205 -* [[EBRAINS Collaboration Page>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]]114 +* **GitHub Repository:** [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]] 115 +* **EBRAINS Collaboration Page:** [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]] 206 206 207 -If you e xperience issues integratingdata, open a[[GitHub Issue>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]]or consulttheEBRAINSNeurodiagnosesForum.117 +If you encounter any issues during data integration or have suggestions for improvement, please open a GitHub Issue or consult the EBRAINS Neurodiagnoses Forum. Together, we can advance the field of neurodiagnostics and contribute to better patient outcomes.
- workflow neurodiagnoses.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.manuelmenendez - Size
-
... ... @@ -1,0 +1,1 @@ 1 +157.5 KB - Content