Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 2.1
edited by manuelmenendez
on 2025/01/27 23:07
on 2025/01/27 23:07
Change comment:
There is no comment for this version
To version 19.1
edited by manuelmenendez
on 2025/02/14 13:57
on 2025/02/14 13:57
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,106 +1,207 @@ 1 - ===**Overview**===1 +**# Neurodiagnoses AI: Multimodal AI for Neurodiagnostic Predictions** 2 2 3 -This section describes the step-by-step process used in the **Neurodiagnoses** project to develop a novel diagnostic framework for neurological diseases. The methodology integrates artificial intelligence (AI), biomedical ontologies, and computational neuroscience to create a structured, interpretable, and scalable diagnostic system. 3 +## **Project Overview** 4 +Neurodiagnoses AI implements AI-driven diagnostic and prognostic models for central nervous system (CNS) disorders, adapting the Florey Dementia Index (FDI) methodology to a broader set of neurological conditions. The approach integrates **multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics) and employs **machine learning models** to provide **explainable, real-time diagnostic insights**.## 4 4 5 ----- 6 +## **How to Use External Databases in Neurodiagnoses** 7 +To enhance diagnostic accuracy, Neurodiagnoses integrates data from multiple biomedical and neurological research databases. Researchers can follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework.## 6 6 7 -=== **1. Data Integration** === 9 +### **Potential Data Sources** 10 +Neurodiagnoses maintains an updated list of potential biomedical databases relevant to neurodegenerative diseases. ## 8 8 9 -==== **Data Sources** ==== 12 +**Reference: List of Potential Databases** 13 +- **ADNI**: Alzheimer's Disease data ([ADNI](https://adni.loni.usc.edu)) 14 +- **PPMI**: Parkinson’s Disease Imaging and biospecimens ([PPMI](https://www.ppmi-info.org)) 15 +- **GP2**: Whole-genome sequencing for PD ([GP2](https://gp2.org)) 16 +- **Enroll-HD**: Huntington’s Disease Clinical and genetic data ([Enroll-HD](https://www.enroll-hd.org)) 17 +- **GAAIN**: Multi-source Alzheimer’s data aggregation ([GAAIN](https://gaain.org)) 18 +- **UK Biobank**: Population-wide genetic, imaging, and health records ([UK Biobank](https://www.ukbiobank.ac.uk)) 19 +- **DPUK**: Dementia and Aging data ([DPUK](https://www.dementiasplatform.uk)) 20 +- **PRION Registry**: Prion Diseases clinical and genetic data ([PRION Registry](https://prionregistry.org)) 21 +- **DECIPHER**: Rare genetic disorder genomic variants ([DECIPHER](https://decipher.sanger.ac.uk)) 10 10 11 -* **Biomedical Ontologies**: 12 -** Human Phenotype Ontology (HPO) for phenotypic abnormalities. 13 -** Gene Ontology (GO) for molecular and cellular processes. 14 -* **Neuroimaging Datasets**: 15 -** Example: Alzheimer’s Disease Neuroimaging Initiative (ADNI), OpenNeuro. 16 -* **Clinical and Biomarker Data**: 17 -** Anonymized clinical reports, molecular biomarkers, and test results. 23 +### **1. Register for Access** 24 +- Each external database requires **individual registration** and access approval. 25 +- Ensure compliance with **ethical approvals** and **data usage agreements** before integrating datasets into Neurodiagnoses. 26 +- Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data.## 18 18 19 -==== **Data Preprocessing** ==== 28 +### **2. Download & Prepare Data** 29 +- Download datasets while adhering to database usage policies. 30 +- Ensure files meet **Neurodiagnoses format requirements**: 31 + - **Tabular Data**: `.csv`, `.tsv` 32 + - **Neuroimaging Data**: `.nii`, `.dcm` 33 + - **Genomic Data**: `.fasta`, `.vcf` 34 + - **Clinical Metadata**: `.json`, `.xml`## 20 20 21 -1. **Standardization**: Ensure all data sources are normalized to a common format. 22 -1. **Feature Selection**: Identify relevant features for diagnosis (e.g., biomarkers, imaging scores). 23 -1. **Data Cleaning**: Handle missing values and remove duplicates. 36 +- **Mandatory Fields for Integration**: 37 + - **Subject ID**: Unique patient identifier 38 + - **Diagnosis**: Standardized disease classification 39 + - **Biomarkers**: CSF, plasma, or imaging biomarkers 40 + - **Genetic Data**: Whole-genome or exome sequencing 41 + - **Neuroimaging Metadata**: MRI/PET acquisition parameters 24 24 25 ----- 43 +### **3. Upload Data to Neurodiagnoses** 44 +**Option 1: Upload to EBRAINS Bucket** 45 +- Location: **EBRAINS Neurodiagnoses Bucket** 46 +- Ensure correct **metadata tagging** before submission.## 26 26 27 -=== **2. AI-Based Analysis** === 48 + **Option 2: Contribute via GitHub Repository** 49 +- Location: **GitHub Data Repository** 50 +- Create a new folder under `/data/` and include a **dataset description**. 51 +- For large datasets, contact project administrators before uploading. 28 28 29 -==== **Model Development** ==== 53 +### **4. Integrate Data into AI Models** 54 +- Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**. 55 +- Standardize **neuroimaging and biomarker formats** using harmonization tools. 56 +- Use **machine learning models** to handle missing data and feature extraction. 57 +- Train AI models with **newly integrated patient cohorts**.## 30 30 31 -* **Embedding Models**: Use pre-trained models like BioBERT or BioLORD for text data. 32 -* **Classification Models**: 33 -** Algorithms: Random Forest, Support Vector Machines (SVM), or neural networks. 34 -** Purpose: Predict the likelihood of specific neurological conditions based on input data. 59 +**Reference**: See `docs/data_processing.md` for detailed instructions. 35 35 36 -==== **Dimensionality Reduction and Interpretability** ==== 61 +## **Collaboration & Partnerships**## 62 +# **Partnering with Data Providers** 63 +Neurodiagnoses seeks partnerships with data repositories to: 64 +- Enable **API-based data integration** for real-time processing. 65 +- Co-develop **harmonized AI-ready datasets** with standardized annotations. 66 +- Secure **funding opportunities** through joint grant applications. 37 37 38 -* Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies) to connect model dimensions to ontology concepts. 39 -* Evaluate interpretability using metrics like the Area Under the Interpretability Curve (AUIC). 68 +**Interested in Partnering?** 69 +- If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 70 +- **Contact**: info@neurodiagnoses.com 40 40 41 ----- 72 +## **Final Notes** 73 +Neurodiagnoses continuously expands its data ecosystem to support AI-driven clinical decision-making. Researchers and institutions are encouraged to contribute **new datasets and methodologies**.## 42 42 43 -=== **3. Diagnostic Framework** === 75 +For additional technical documentation: 76 +- **GitHub Repository**: [Neurodiagnoses GitHub](https://github.com/neurodiagnoses) 77 +- **EBRAINS Collaboration Page**: [EBRAINS Neurodiagnoses](https://ebrains.eu/collabs/neurodiagnoses) 44 44 45 - ====**Axes ofDiagnosis**====79 +If you experience issues integrating data, **open a GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**. 46 46 47 - Theframeworkorganizesdiagnosticdata intothreeaxes:81 +== **How to Use External Databases in Neurodiagnoses** == 48 48 49 -1. **Etiology**: Genetic and environmental risk factors. 50 -1. **Molecular Markers**: Biomarkers such as amyloid-beta, tau, and alpha-synuclein. 51 -1. **Neuroanatomical Correlations**: Results from neuroimaging (e.g., MRI, PET). 83 +To enhance the accuracy of our diagnostic models, Neurodiagnoses integrates data from multiple biomedical and neurological research databases. If you are a researcher, follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework. 52 52 53 -=== =**RecommendationSystem** ====85 +=== **Potential Data Sources** === 54 54 55 -* Suggests additional tests or biomarkers if gaps are detected in the data. 56 -* Prioritizes tests based on clinical impact and cost-effectiveness. 87 +Neurodiagnoses maintains an updated list of potential biomedical databases relevant to neurodegenerative diseases. 57 57 58 --- --89 +* Reference: [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 59 59 60 -=== ** 4.Computational Workflow** ===91 +=== **1. Register for Access** === 61 61 62 -1. **Data Loading**: Import data from storage (Drive or Bucket). 63 -1. **Feature Engineering**: Generate derived features from the raw data. 64 -1. **Model Training**: 65 -1*. Split data into training, validation, and test sets. 66 -1*. Train models with cross-validation to ensure robustness. 67 -1. **Evaluation**: 68 -1*. Metrics: Accuracy, F1-Score, AUIC for interpretability. 69 -1*. Compare against baseline models and domain benchmarks. 93 +Each external database requires individual registration and access approval. Follow the official guidelines of each database provider. 70 70 95 +* Ensure that you have completed all ethical approvals and data access agreements before integrating datasets into Neurodiagnoses. 96 +* Some repositories require a Data Usage Agreement (DUA) before downloading sensitive medical data. 97 + 98 +=== **2. Download & Prepare Data** === 99 + 100 +Once access is granted, download datasets while complying with data usage policies. Ensure that the files meet Neurodiagnoses’ format requirements for smooth integration. 101 + 102 +==== **Supported File Formats** ==== 103 + 104 +* Tabular Data: .csv, .tsv 105 +* Neuroimaging Data: .nii, .dcm 106 +* Genomic Data: .fasta, .vcf 107 +* Clinical Metadata: .json, .xml 108 + 109 +==== **Mandatory Fields for Integration** ==== 110 + 111 +|=Field Name|=Description 112 +|Subject ID|Unique patient identifier 113 +|Diagnosis|Standardized disease classification 114 +|Biomarkers|CSF, plasma, or imaging biomarkers 115 +|Genetic Data|Whole-genome or exome sequencing 116 +|Neuroimaging Metadata|MRI/PET acquisition parameters 117 + 118 +=== **3. Upload Data to Neurodiagnoses** === 119 + 120 +Once preprocessed, data can be uploaded to EBRAINS or GitHub. 121 + 122 +* ((( 123 +**Option 1: Upload to EBRAINS Bucket** 124 + 125 +* Location: [[EBRAINS Neurodiagnoses Bucket>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]] 126 +* Ensure correct metadata tagging before submission. 127 +))) 128 +* ((( 129 +**Option 2: Contribute via GitHub Repository** 130 + 131 +* Location: [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]] 132 +* Create a new folder under /data/ and include dataset description. 133 +))) 134 + 135 +//Note: For large datasets, please contact the project administrators before uploading.// 136 + 137 +=== **4. Integrate Data into AI Models** === 138 + 139 +Once uploaded, datasets must be harmonized and formatted before AI model training. 140 + 141 +==== **Steps for Data Integration** ==== 142 + 143 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 144 +* Standardize neuroimaging and biomarker formats using harmonization tools. 145 +* Use machine learning models to handle missing data and feature extraction. 146 +* Train AI models with newly integrated patient cohorts. 147 +* Reference: [[Detailed instructions can be found in docs/data_processing.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]]. 148 + 71 71 ---- 72 72 73 -== =**5. Validation** ===151 +== **Database Sources Table** == 74 74 75 -=== =**InternalValidation** ====153 +=== **Where to Insert This** === 76 76 77 -* Testthesystemusing simulated datasets andknownlinical78 -* Fine-tunemodels basedon validation results.155 +* GitHub: [[docs/data_sources.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_sources.md]] 156 +* EBRAINS Wiki: Collabs/neurodiagnoses/Data Sources 79 79 80 -=== =**ExternalValidation** ====158 +=== **Key Databases for Neurodiagnoses** === 81 81 82 -* Collaborate with research institutions and hospitals to test the system in real-world settings. 83 -* Use anonymized patient data to ensure privacy compliance. 160 +|=Database|=Focus Area|=Data Type|=Access Link 161 +|ADNI|Alzheimer's Disease|MRI, PET, CSF, cognitive tests|ADNI 162 +|PPMI|Parkinson’s Disease|Imaging, biospecimens|[[PPMI>>url:https://www.ppmi-info.org/]] 163 +|GP2|Genetic Data for PD|Whole-genome sequencing|[[GP2>>url:https://gp2.org/]] 164 +|Enroll-HD|Huntington’s Disease|Clinical, genetic, imaging|[[Enroll-HD>>url:https://enroll-hd.org/]] 165 +|GAAIN|Alzheimer's & Cognitive Decline|Multi-source data aggregation|[[GAAIN>>url:https://www.gaain.org/]] 166 +|UK Biobank|Population-wide studies|Genetic, imaging, health records|[[UK Biobank>>url:https://www.ukbiobank.ac.uk/]] 167 +|DPUK|Dementia & Aging|Imaging, genetics, lifestyle factors|[[DPUK>>url:https://www.dementiasplatform.uk/]] 168 +|PRION Registry|Prion Diseases|Clinical and genetic data|[[PRION Registry>>url:https://www.prionalliance.org/]] 169 +|DECIPHER|Rare Genetic Disorders|Genomic variants|DECIPHER 84 84 171 +If you know a relevant dataset, submit a proposal in [[GitHub Issues>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]]. 172 + 85 85 ---- 86 86 87 -== =**6.Collaborative Development** ===175 +== **Collaboration & Partnerships** == 88 88 89 - Theprojectis opentocontributionsfrom researchers,clinicians,and developers. Key tools include:177 +=== **Where to Insert This** === 90 90 91 -* **Jupyter Notebooks**: For data analysis and pipeline development. 92 -* **Wiki Pages**: For documenting methods and results. 93 -* **Drive and Bucket**: For sharing code, data, and outputs. 179 +* GitHub: [[docs/collaboration.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/collaboration.md]] 180 +* EBRAINS Wiki: Collabs/neurodiagnoses/Collaborations 94 94 182 +=== **Partnering with Data Providers** === 183 + 184 +Beyond using existing datasets, Neurodiagnoses seeks partnerships with data repositories to: 185 + 186 +* Enable direct API-based data integration for real-time processing. 187 +* Co-develop harmonized AI-ready datasets with standardized annotations. 188 +* Secure funding opportunities through joint grant applications. 189 + 190 +=== **Interested in Partnering?** === 191 + 192 +If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 193 + 194 +* Contact: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 195 + 95 95 ---- 96 96 97 -== =**7. Toolsand Technologies** ===198 +== **Final Notes** == 98 98 99 - * **ProgrammingLanguages**: Pythonfor AIanddataprocessing.100 - * **Frameworks**:101 - ** TensorFlowandPyTorchfor machinelearning.102 - ** Flask or FastAPI for backend services.103 -* **Visualization**: Plotly and Matplotlibforinteractiveand staticvisualizations.104 -* **EBRAINSServices**:105 - ** Collaboratory Lab for running Notebooks.106 - **Bucketsfor storing large datasets.200 +Neurodiagnoses continuously expands its data ecosystem to support AI-driven clinical decision-making. Researchers and institutions are encouraged to contribute new datasets and methodologies. 201 + 202 +For additional technical documentation: 203 + 204 +* [[GitHub Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]] 205 +* [[EBRAINS Collaboration Page>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]] 206 + 207 +If you experience issues integrating data, open a [[GitHub Issue>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]] or consult the EBRAINS Neurodiagnoses Forum.