Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 20.1
edited by manuelmenendez
on 2025/02/14 14:47
Change comment: There is no comment for this version
To version 16.1
edited by manuelmenendez
on 2025/02/09 10:08
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,146 +1,260 @@
1 -Here is the updated **Methodology** section for the EBRAINS Wiki, incorporating the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)** for **biomarker classification across all neurodegenerative diseases**.
1 +== **Overview** ==
2 2  
3 +This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**.
4 +
5 +== **Workflow** ==
6 +
7 +1. (((
8 +**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]**
9 +
10 +* Create a **GitHub repository** for AI scripts and models.
11 +* Use **GitHub Projects** to manage research milestones.
12 +)))
13 +1. (((
14 +**We Use EBRAINS for Data & Collaboration**
15 +
16 +* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**.
17 +* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models.
18 +* Use **EBRAINS Wiki** for structured documentation and research discussion.
19 +)))
20 +
3 3  ----
4 4  
5 -== **Neurodiagnoses AI: Multimodal AI for Neurodiagnostic Predictions** ==
23 +== **1. Data Integration** ==
6 6  
7 -=== **Project Overview** ===
25 +=== **EBRAINS Medical Informatics Platform (MIP)**. ===
8 8  
9 -Neurodiagnoses AI implements **AI-driven diagnostic and prognostic models** for central nervous system (CNS) disorders, expanding the **Florey Dementia Index (FDI) methodology** to a broader set of neurological conditions. The approach integrates **multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics) and employs machine learning models to provide **explainable, real-time diagnostic insights**. This framework now incorporates **Neuromarker**, a **generalized biomarker ontology** that categorizes biomarkers across neurodegenerative diseases, enabling **standardized, cross-disease AI training**.
27 +Neurodiagnoses integrates clinical data via the **EBRAINS Medical Informatics Platform (MIP)**. MIP federates decentralized clinical data, allowing Neurodiagnoses to securely access and process sensitive information for AI-based diagnostics.
10 10  
11 -== **Neuromarker: Generalized Biomarker Ontology** ==
29 +==== How It Works ====
12 12  
13 -Neuromarker extends the **Common Alzheimer’s Disease Research Ontology (CADRO)** into a **cross-disease biomarker categorization framework** applicable to all neurodegenerative diseases (NDDs). It allows for **standardized classification, AI-based feature extraction, and multimodal integration**.
14 14  
15 -=== **Core Biomarker Categories** ===
32 +1. (((
33 +**Authentication & API Access:**
16 16  
17 -The following ontology is used within **Neurodiagnoses AI** for biomarker categorization:
35 +* Users must have an **EBRAINS account**.
36 +* Neurodiagnoses uses **secure API endpoints** to fetch clinical data (e.g., from the **Federation for Dementia**).
37 +)))
38 +1. (((
39 +**Data Mapping & Harmonization:**
18 18  
19 -|=**Category**|=**Description**
20 -|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic)
21 -|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein)
22 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL
23 -|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers
24 -|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers
25 -|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS)
26 -|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores
27 -|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities
41 +* Retrieved data is **normalized** and converted to standard formats (.csv, .json).
42 +* Data from **multiple sources** is harmonized to ensure consistency for AI processing.
43 +)))
44 +1. (((
45 +**Security & Compliance:**
28 28  
47 +* All data access is **logged and monitored**.
48 +* Data remains on **MIP servers** using **federated learning techniques** when possible.
49 +* Access is granted only after signing a **Data Usage Agreement (DUA)**.
50 +)))
51 +
52 +==== Implementation Steps ====
53 +
54 +
55 +1. Clone the repository.
56 +1. Configure your **EBRAINS API credentials** in mip_integration.py.
57 +1. Run the script to **download and harmonize clinical data**.
58 +1. Process the data for **AI model training**.
59 +
60 +For more detailed instructions, please refer to the **[[MIP Documentation>>url:https://mip.ebrains.eu/]]**.
61 +
29 29  ----
30 30  
31 -== **How to Use External Databases in Neurodiagnoses** ==
64 +=== Data Processing & Integration with Clinica.Run ===
32 32  
33 -To enhance diagnostic accuracy, Neurodiagnoses AI integrates data from **multiple biomedical and neurological research databases**. Researchers can follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework.
66 +Neurodiagnoses now supports **Clinica.Run**, an open-source neuroimaging platform designed for **multimodal data processing and reproducible neuroscience workflows**.
34 34  
35 -=== **Potential Data Sources** ===
68 +==== How It Works ====
36 36  
37 -Neurodiagnoses maintains an **updated list** of biomedical datasets relevant to neurodegenerative diseases:
38 38  
39 -* **ADNI**: Alzheimer's Disease Imaging & Biomarkers → [[ADNI>>url:https://adni.loni.usc.edu/]]
40 -* **PPMI**: Parkinson’s Disease Imaging & Biospecimens → [[PPMI>>url:https://www.ppmi-info.org/]]
41 -* **GP2**: Whole-Genome Sequencing for PD → [[GP2>>url:https://gp2.org/]]
42 -* **Enroll-HD**: Huntington’s Disease Clinical & Genetic Data → [[Enroll-HD>>url:https://www.enroll-hd.org/]]
43 -* **GAAIN**: Multi-Source Alzheimer’s Data Aggregation → [[GAAIN>>url:https://gaain.org/]]
44 -* **UK Biobank**: Population-Wide Genetic, Imaging & Health Records → [[UK Biobank>>url:https://www.ukbiobank.ac.uk/]]
45 -* **DPUK**: Dementia & Aging Data → [[DPUK>>url:https://www.dementiasplatform.uk/]]
46 -* **PRION Registry**: Prion Diseases Clinical & Genetic Data → [[PRION Registry>>url:https://prionregistry.org/]]
47 -* **DECIPHER**: Rare Genetic Disorder Genomic Variants → [[DECIPHER>>url:https://decipher.sanger.ac.uk/]]
71 +1. (((
72 +**Neuroimaging Preprocessing:**
48 48  
74 +* MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines**.
75 +* Supports **longitudinal and cross-sectional analyses**.
76 +)))
77 +1. (((
78 +**Automated Biomarker Extraction:**
79 +
80 +* Standardized extraction of **volumetric, metabolic, and functional biomarkers**.
81 +* Integration with machine learning models in Neurodiagnoses.
82 +)))
83 +1. (((
84 +**Data Security & Compliance:**
85 +
86 +* Clinica.Run operates in **compliance with GDPR and HIPAA**.
87 +* Neuroimaging data remains **within the original storage environment**.
88 +)))
89 +
90 +==== Implementation Steps ====
91 +
92 +
93 +1. Install **Clinica.Run** dependencies.
94 +1. Configure your **Clinica.Run pipeline** in clinica_run_config.json.
95 +1. Run the pipeline for **preprocessing and biomarker extraction**.
96 +1. Use processed neuroimaging data for **AI-driven diagnostics** in Neurodiagnoses.
97 +
98 +For further information, refer to **[[Clinica.Run Documentation>>url:https://clinica.run/]]**.
99 +
100 +==== ====
101 +
102 +==== **Data Sources** ====
103 +
104 +[[List of potential sources of databases>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]]
105 +
106 +**Biomedical Ontologies & Databases:**
107 +
108 +* **Human Phenotype Ontology (HPO)** for symptom annotation.
109 +* **Gene Ontology (GO)** for molecular and cellular processes.
110 +
111 +**Dimensionality Reduction and Interpretability:**
112 +
113 +* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**.
114 +* **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts.
115 +
116 +**Neuroimaging & EEG/MEG Data:**
117 +
118 +* **MRI volumetric measures** for brain atrophy tracking.
119 +* **EEG functional connectivity patterns** (AI-Mind).
120 +
121 +**Clinical & Biomarker Data:**
122 +
123 +* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light).
124 +* **Sleep monitoring and actigraphy data** (ADIS).
125 +
126 +**Federated Learning Integration:**
127 +
128 +* **Secure multi-center data harmonization** (PROMINENT).
129 +
49 49  ----
50 50  
51 -== **1. Register for Access** ==
132 +==== **Annotation System for Multi-Modal Data** ====
52 52  
53 -* Each external database requires **individual registration and access approval**.
54 -* Ensure compliance with **ethical approvals and data usage agreements** before integrating datasets into Neurodiagnoses.
55 -* Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data.
134 +To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will:
56 56  
136 +* **Assign standardized metadata tags** to diagnostic features.
137 +* **Provide contextual explanations** for AI-based classifications.
138 +* **Track temporal disease progression annotations** to identify long-term trends.
139 +
57 57  ----
58 58  
59 -== **2. Download & Prepare Data** ==
142 +== **2. AI-Based Analysis** ==
60 60  
61 -* Download datasets while adhering to **database usage policies**.
62 -* Ensure files meet **Neurodiagnoses format requirements**:
144 +==== **Machine Learning & Deep Learning Models** ====
63 63  
64 -|=**Data Type**|=**Accepted Formats**
65 -|**Tabular Data**|.csv, .tsv
66 -|**Neuroimaging**|.nii, .dcm
67 -|**Genomic Data**|.fasta, .vcf
68 -|**Clinical Metadata**|.json, .xml
146 +**Risk Prediction Models:**
69 69  
70 -* **Mandatory Fields for Integration**:
71 -** **Subject ID**: Unique patient identifier
72 -** **Diagnosis**: Standardized disease classification
73 -** **Biomarkers**: CSF, plasma, or imaging biomarkers
74 -** **Genetic Data**: Whole-genome or exome sequencing
75 -** **Neuroimaging Metadata**: MRI/PET acquisition parameters
148 +* **LETHE’s cognitive risk prediction model** integrated into the annotation framework.
76 76  
77 -----
150 +**Biomarker Classification & Probabilistic Imputation:**
78 78  
79 -== **3. Upload Data to Neurodiagnoses** ==
152 +* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**.
80 80  
81 -=== **Option 1: Upload to EBRAINS Bucket** ===
154 +**Neuroimaging Feature Extraction:**
82 82  
83 -* Location: **EBRAINS Neurodiagnoses Bucket**
84 -* Ensure **correct metadata tagging** before submission.
156 +* **MRI & EEG data** annotated with **neuroanatomical feature labels**.
85 85  
86 -=== **Option 2: Contribute via GitHub Repository** ===
158 +==== **AI-Powered Annotation System** ====
87 87  
88 -* Location: **GitHub Data Repository**
89 -* Create a **new folder under /data/** and include a **dataset description**.
90 -* **For large datasets**, contact project administrators before uploading.
160 +* Uses **SHAP-based interpretability tools** to explain model decisions.
161 +* Generates **automated clinical annotations** in structured reports.
162 +* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**).
91 91  
92 92  ----
93 93  
94 -== **4. Integrate Data into AI Models** ==
166 +== **3. Diagnostic Framework & Clinical Decision Support** ==
95 95  
96 -* Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**.
97 -* **Standardize neuroimaging and biomarker formats** using harmonization tools.
98 -* Use **machine learning models** to handle **missing data** and **feature extraction**.
99 -* Train AI models with **newly integrated patient cohorts**.
168 +==== **Tridimensional Diagnostic Axes** ====
100 100  
101 -**Reference**: See docs/data_processing.md for detailed instructions.
170 +**Axis 1: Etiology (Pathogenic Mechanisms)**
102 102  
103 -----
172 +* Classification based on **genetic markers, cellular pathways, and environmental risk factors**.
173 +* **AI-assisted annotation** provides **causal interpretations** for clinical use.
104 104  
105 -== **AI-Driven Biomarker Categorization** ==
175 +**Axis 2: Molecular Markers & Biomarkers**
106 106  
107 -Neurodiagnoses employs **AI models** for biomarker classification:
177 +* **Integration of CSF, blood, and neuroimaging biomarkers**.
178 +* **Structured annotation** highlights **biological pathways linked to diagnosis**.
108 108  
109 -|=**Model Type**|=**Application**
110 -|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases
111 -|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers
112 -|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data
180 +**Axis 3: Neuroanatomoclinical Correlations**
113 113  
182 +* **MRI and EEG data** provide anatomical and functional insights.
183 +* **AI-generated progression maps** annotate **brain structure-function relationships**.
184 +
114 114  ----
115 115  
116 -== **Collaboration & Partnerships** ==
187 +== **4. Computational Workflow & Annotation Pipelines** ==
117 117  
118 -=== **Partnering with Data Providers** ===
189 +==== **Data Processing Steps** ====
119 119  
120 -Neurodiagnoses seeks partnerships with data repositories to:
191 +**Data Ingestion:**
121 121  
122 -* Enable **API-based data integration** for real-time processing.
123 -* Co-develop **harmonized AI-ready datasets** with standardized annotations.
124 -* Secure **funding opportunities** through joint grant applications.
193 +* **Harmonized datasets** stored in **EBRAINS Bucket**.
194 +* **Preprocessing pipelines** clean and standardize data.
125 125  
126 -**Interested in Partnering?**
196 +**Feature Engineering:**
127 127  
128 -* If you represent a **research consortium or database provider**, reach out to explore **data-sharing agreements**.
129 -* **Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]
198 +* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**.
130 130  
200 +**AI-Generated Annotations:**
201 +
202 +* **Automated tagging** of diagnostic features in **structured reports**.
203 +* **Explainability modules (SHAP, LIME)** ensure transparency in predictions.
204 +
205 +**Clinical Decision Support Integration:**
206 +
207 +* **AI-annotated findings** fed into **interactive dashboards**.
208 +* **Clinicians can adjust, validate, and modify annotations**.
209 +
131 131  ----
132 132  
133 -== **Final Notes** ==
212 +== **5. Validation & Real-World Testing** ==
134 134  
135 -Neurodiagnoses continuously expands its **data ecosystem** to support **AI-driven clinical decision-making**. Researchers and institutions are encouraged to **contribute new datasets and methodologies**.
214 +==== **Prospective Clinical Study** ====
136 136  
137 -**For additional technical documentation**:
216 +* **Multi-center validation** of AI-based **annotations & risk stratifications**.
217 +* **Benchmarking against clinician-based diagnoses**.
218 +* **Real-world testing** of AI-powered **structured reporting**.
138 138  
139 -* **GitHub Repository**: [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]]
140 -* **EBRAINS Collaboration Page**: [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]]
220 +==== **Quality Assurance & Explainability** ====
141 141  
142 -**If you experience issues integrating data**, open a **GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**.
222 +* **Annotations linked to structured knowledge graphs** for improved transparency.
223 +* **Interactive annotation editor** allows clinicians to validate AI outputs.
143 143  
144 144  ----
145 145  
146 -This **updated methodology** now incorporates [[https:~~/~~/github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/biomarker_ontology>>https://Neuromarker]] for standardized biomarker classification, enabling **cross-disease AI training** across neurodegenerative disorders.
227 +== **6. Collaborative Development** ==
228 +
229 +The project is **open to contributions** from **researchers, clinicians, and developers**.
230 +
231 +**Key tools include:**
232 +
233 +* **Jupyter Notebooks**: For data analysis and pipeline development.
234 +** Example: **probabilistic imputation**
235 +* **Wiki Pages**: For documenting methods and results.
236 +* **Drive and Bucket**: For sharing code, data, and outputs.
237 +* **Collaboration with related projects**:
238 +** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment**
239 +
240 +----
241 +
242 +== **7. Tools and Technologies** ==
243 +
244 +==== **Programming Languages:** ====
245 +
246 +* **Python** for AI and data processing.
247 +
248 +==== **Frameworks:** ====
249 +
250 +* **TensorFlow** and **PyTorch** for machine learning.
251 +* **Flask** or **FastAPI** for backend services.
252 +
253 +==== **Visualization:** ====
254 +
255 +* **Plotly** and **Matplotlib** for interactive and static visualizations.
256 +
257 +==== **EBRAINS Services:** ====
258 +
259 +* **Collaboratory Lab** for running Notebooks.
260 +* **Buckets** for storing large datasets.