Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 20.1
edited by manuelmenendez
on 2025/02/14 14:47
on 2025/02/14 14:47
Change comment:
There is no comment for this version
To version 16.1
edited by manuelmenendez
on 2025/02/09 10:08
on 2025/02/09 10:08
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,146 +1,260 @@ 1 - Hereis the updated**Methodology** section for the EBRAINS Wiki, incorporating the **Generalized Neuro BiomarkerOntology Categorization (Neuromarker)** for **biomarker classification across all neurodegenerative diseases**.1 +== **Overview** == 2 2 3 +This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**. 4 + 5 +== **Workflow** == 6 + 7 +1. ((( 8 +**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]** 9 + 10 +* Create a **GitHub repository** for AI scripts and models. 11 +* Use **GitHub Projects** to manage research milestones. 12 +))) 13 +1. ((( 14 +**We Use EBRAINS for Data & Collaboration** 15 + 16 +* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**. 17 +* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models. 18 +* Use **EBRAINS Wiki** for structured documentation and research discussion. 19 +))) 20 + 3 3 ---- 4 4 5 -== ** NeurodiagnosesAI: MultimodalAIfor Neurodiagnostic Predictions** ==23 +== **1. Data Integration** == 6 6 7 -=== ** ProjectOverview** ===25 +=== **EBRAINS Medical Informatics Platform (MIP)**. === 8 8 9 -Neurodiagnoses AIimplements **AI-drivendiagnosticnd prognostic models**for centralnervoussystem (CNS)disorders, expandingthe **Florey DementiaIndex(FDI)methodology**toa broaderset of neurological conditions.Theapproach integrates**multimodal datasources** (EEG, neuroimaging, biomarkers,andgenetics) andemploysmachinelearning modelstoprovide**explainable, real-time diagnostic insights**. This frameworknowincorporates **Neuromarker**, a **generalized biomarker ontology**that categorizesbiomarkersacross neurodegenerativediseases, enabling**standardized, cross-disease AItraining**.27 +Neurodiagnoses integrates clinical data via the **EBRAINS Medical Informatics Platform (MIP)**. MIP federates decentralized clinical data, allowing Neurodiagnoses to securely access and process sensitive information for AI-based diagnostics. 10 10 11 -== **Neuromarker:GeneralizedBiomarkerOntology**==29 +==== How It Works ==== 12 12 13 -Neuromarker extends the **Common Alzheimer’s Disease Research Ontology (CADRO)** into a **cross-disease biomarker categorization framework** applicable to all neurodegenerative diseases (NDDs). It allows for **standardized classification, AI-based feature extraction, and multimodal integration**. 14 14 15 -=== **Core Biomarker Categories** === 32 +1. ((( 33 +**Authentication & API Access:** 16 16 17 -The following ontology is used within **Neurodiagnoses AI** for biomarker categorization: 35 +* Users must have an **EBRAINS account**. 36 +* Neurodiagnoses uses **secure API endpoints** to fetch clinical data (e.g., from the **Federation for Dementia**). 37 +))) 38 +1. ((( 39 +**Data Mapping & Harmonization:** 18 18 19 -|=**Category**|=**Description** 20 -|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 21 -|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 22 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL 23 -|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 24 -|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 25 -|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 26 -|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 27 -|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 41 +* Retrieved data is **normalized** and converted to standard formats (.csv, .json). 42 +* Data from **multiple sources** is harmonized to ensure consistency for AI processing. 43 +))) 44 +1. ((( 45 +**Security & Compliance:** 28 28 47 +* All data access is **logged and monitored**. 48 +* Data remains on **MIP servers** using **federated learning techniques** when possible. 49 +* Access is granted only after signing a **Data Usage Agreement (DUA)**. 50 +))) 51 + 52 +==== Implementation Steps ==== 53 + 54 + 55 +1. Clone the repository. 56 +1. Configure your **EBRAINS API credentials** in mip_integration.py. 57 +1. Run the script to **download and harmonize clinical data**. 58 +1. Process the data for **AI model training**. 59 + 60 +For more detailed instructions, please refer to the **[[MIP Documentation>>url:https://mip.ebrains.eu/]]**. 61 + 29 29 ---- 30 30 31 -== **HowtoUseExternalDatabasesinNeurodiagnoses**==64 +=== Data Processing & Integration with Clinica.Run === 32 32 33 - To enhance diagnostic accuracy,NeurodiagnosesAI integratesdata from**multiple biomedicalandneurologicalresearchdatabases**. Researcherscanfollowthesesteps toaccess,prepare, andintegrateatainto theNeurodiagnosesframework.66 +Neurodiagnoses now supports **Clinica.Run**, an open-source neuroimaging platform designed for **multimodal data processing and reproducible neuroscience workflows**. 34 34 35 -=== **PotentialDataSources**===68 +==== How It Works ==== 36 36 37 -Neurodiagnoses maintains an **updated list** of biomedical datasets relevant to neurodegenerative diseases: 38 38 39 -* **ADNI**: Alzheimer's Disease Imaging & Biomarkers → [[ADNI>>url:https://adni.loni.usc.edu/]] 40 -* **PPMI**: Parkinson’s Disease Imaging & Biospecimens → [[PPMI>>url:https://www.ppmi-info.org/]] 41 -* **GP2**: Whole-Genome Sequencing for PD → [[GP2>>url:https://gp2.org/]] 42 -* **Enroll-HD**: Huntington’s Disease Clinical & Genetic Data → [[Enroll-HD>>url:https://www.enroll-hd.org/]] 43 -* **GAAIN**: Multi-Source Alzheimer’s Data Aggregation → [[GAAIN>>url:https://gaain.org/]] 44 -* **UK Biobank**: Population-Wide Genetic, Imaging & Health Records → [[UK Biobank>>url:https://www.ukbiobank.ac.uk/]] 45 -* **DPUK**: Dementia & Aging Data → [[DPUK>>url:https://www.dementiasplatform.uk/]] 46 -* **PRION Registry**: Prion Diseases Clinical & Genetic Data → [[PRION Registry>>url:https://prionregistry.org/]] 47 -* **DECIPHER**: Rare Genetic Disorder Genomic Variants → [[DECIPHER>>url:https://decipher.sanger.ac.uk/]] 71 +1. ((( 72 +**Neuroimaging Preprocessing:** 48 48 74 +* MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines**. 75 +* Supports **longitudinal and cross-sectional analyses**. 76 +))) 77 +1. ((( 78 +**Automated Biomarker Extraction:** 79 + 80 +* Standardized extraction of **volumetric, metabolic, and functional biomarkers**. 81 +* Integration with machine learning models in Neurodiagnoses. 82 +))) 83 +1. ((( 84 +**Data Security & Compliance:** 85 + 86 +* Clinica.Run operates in **compliance with GDPR and HIPAA**. 87 +* Neuroimaging data remains **within the original storage environment**. 88 +))) 89 + 90 +==== Implementation Steps ==== 91 + 92 + 93 +1. Install **Clinica.Run** dependencies. 94 +1. Configure your **Clinica.Run pipeline** in clinica_run_config.json. 95 +1. Run the pipeline for **preprocessing and biomarker extraction**. 96 +1. Use processed neuroimaging data for **AI-driven diagnostics** in Neurodiagnoses. 97 + 98 +For further information, refer to **[[Clinica.Run Documentation>>url:https://clinica.run/]]**. 99 + 100 +==== ==== 101 + 102 +==== **Data Sources** ==== 103 + 104 +[[List of potential sources of databases>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 105 + 106 +**Biomedical Ontologies & Databases:** 107 + 108 +* **Human Phenotype Ontology (HPO)** for symptom annotation. 109 +* **Gene Ontology (GO)** for molecular and cellular processes. 110 + 111 +**Dimensionality Reduction and Interpretability:** 112 + 113 +* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 114 +* **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 115 + 116 +**Neuroimaging & EEG/MEG Data:** 117 + 118 +* **MRI volumetric measures** for brain atrophy tracking. 119 +* **EEG functional connectivity patterns** (AI-Mind). 120 + 121 +**Clinical & Biomarker Data:** 122 + 123 +* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 124 +* **Sleep monitoring and actigraphy data** (ADIS). 125 + 126 +**Federated Learning Integration:** 127 + 128 +* **Secure multi-center data harmonization** (PROMINENT). 129 + 49 49 ---- 50 50 51 -== ** 1. RegisterforAccess** ==132 +==== **Annotation System for Multi-Modal Data** ==== 52 52 53 -* Each external database requires **individual registration and access approval**. 54 -* Ensure compliance with **ethical approvals and data usage agreements** before integrating datasets into Neurodiagnoses. 55 -* Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data. 134 +To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will: 56 56 136 +* **Assign standardized metadata tags** to diagnostic features. 137 +* **Provide contextual explanations** for AI-based classifications. 138 +* **Track temporal disease progression annotations** to identify long-term trends. 139 + 57 57 ---- 58 58 59 -== **2. Download& Prepare Data** ==142 +== **2. AI-Based Analysis** == 60 60 61 -* Download datasets while adhering to **database usage policies**. 62 -* Ensure files meet **Neurodiagnoses format requirements**: 144 +==== **Machine Learning & Deep Learning Models** ==== 63 63 64 -|=**Data Type**|=**Accepted Formats** 65 -|**Tabular Data**|.csv, .tsv 66 -|**Neuroimaging**|.nii, .dcm 67 -|**Genomic Data**|.fasta, .vcf 68 -|**Clinical Metadata**|.json, .xml 146 +**Risk Prediction Models:** 69 69 70 -* **Mandatory Fields for Integration**: 71 -** **Subject ID**: Unique patient identifier 72 -** **Diagnosis**: Standardized disease classification 73 -** **Biomarkers**: CSF, plasma, or imaging biomarkers 74 -** **Genetic Data**: Whole-genome or exome sequencing 75 -** **Neuroimaging Metadata**: MRI/PET acquisition parameters 148 +* **LETHE’s cognitive risk prediction model** integrated into the annotation framework. 76 76 77 - ----150 +**Biomarker Classification & Probabilistic Imputation:** 78 78 79 - ==**3.UploadDatatoNeurodiagnoses**==152 +* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. 80 80 81 - ===**Option1: UploadtoEBRAINS Bucket**===154 +**Neuroimaging Feature Extraction:** 82 82 83 -* Location: **EBRAINS Neurodiagnoses Bucket** 84 -* Ensure **correct metadata tagging** before submission. 156 +* **MRI & EEG data** annotated with **neuroanatomical feature labels**. 85 85 86 -=== ** Option 2: ContributeviaGitHub Repository** ===158 +==== **AI-Powered Annotation System** ==== 87 87 88 -* Location:**GitHubDataRepository**89 -* Createa**new folderunder/data/**andincludea **datasetdescription**.90 -* **Forlargedatasets**, contact project administratorsbefore uploading.160 +* Uses **SHAP-based interpretability tools** to explain model decisions. 161 +* Generates **automated clinical annotations** in structured reports. 162 +* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). 91 91 92 92 ---- 93 93 94 -== ** 4.IntegrateDataintoAI Models** ==166 +== **3. Diagnostic Framework & Clinical Decision Support** == 95 95 96 -* Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**. 97 -* **Standardize neuroimaging and biomarker formats** using harmonization tools. 98 -* Use **machine learning models** to handle **missing data** and **feature extraction**. 99 -* Train AI models with **newly integrated patient cohorts**. 168 +==== **Tridimensional Diagnostic Axes** ==== 100 100 101 -** Reference**:See docs/data_processing.mdfor detailed instructions.170 +**Axis 1: Etiology (Pathogenic Mechanisms)** 102 102 103 ----- 172 +* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 173 +* **AI-assisted annotation** provides **causal interpretations** for clinical use. 104 104 105 - ==**AI-DrivenBiomarkerCategorization**==175 +**Axis 2: Molecular Markers & Biomarkers** 106 106 107 -Neurodiagnoses employs **AI models** for biomarker classification: 177 +* **Integration of CSF, blood, and neuroimaging biomarkers**. 178 +* **Structured annotation** highlights **biological pathways linked to diagnosis**. 108 108 109 -|=**Model Type**|=**Application** 110 -|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 111 -|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 112 -|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 180 +**Axis 3: Neuroanatomoclinical Correlations** 113 113 182 +* **MRI and EEG data** provide anatomical and functional insights. 183 +* **AI-generated progression maps** annotate **brain structure-function relationships**. 184 + 114 114 ---- 115 115 116 -== **Co llaboration &Partnerships** ==187 +== **4. Computational Workflow & Annotation Pipelines** == 117 117 118 -=== ** Partnering withData Providers** ===189 +==== **Data Processing Steps** ==== 119 119 120 - Neurodiagnoses seeks partnerships with datarepositories to:191 +**Data Ingestion:** 121 121 122 -* Enable **API-based data integration** for real-time processing. 123 -* Co-develop **harmonized AI-ready datasets** with standardized annotations. 124 -* Secure **funding opportunities** through joint grant applications. 193 +* **Harmonized datasets** stored in **EBRAINS Bucket**. 194 +* **Preprocessing pipelines** clean and standardize data. 125 125 126 -** InterestedinPartnering?**196 +**Feature Engineering:** 127 127 128 -* If you represent a **research consortium or database provider**, reach out to explore **data-sharing agreements**. 129 -* **Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 198 +* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. 130 130 200 +**AI-Generated Annotations:** 201 + 202 +* **Automated tagging** of diagnostic features in **structured reports**. 203 +* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 204 + 205 +**Clinical Decision Support Integration:** 206 + 207 +* **AI-annotated findings** fed into **interactive dashboards**. 208 +* **Clinicians can adjust, validate, and modify annotations**. 209 + 131 131 ---- 132 132 133 -== ** FinalNotes** ==212 +== **5. Validation & Real-World Testing** == 134 134 135 - Neurodiagnoses continuously expands its **dataecosystem** to support **AI-drivenclinicaldecision-making**. Researchers and institutions are encouragedto**contributenew datasets and methodologies**.214 +==== **Prospective Clinical Study** ==== 136 136 137 -**For additional technical documentation**: 216 +* **Multi-center validation** of AI-based **annotations & risk stratifications**. 217 +* **Benchmarking against clinician-based diagnoses**. 218 +* **Real-world testing** of AI-powered **structured reporting**. 138 138 139 -* **GitHub Repository**: [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]] 140 -* **EBRAINS Collaboration Page**: [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]] 220 +==== **Quality Assurance & Explainability** ==== 141 141 142 -**If you experience issues integrating data**, open a **GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**. 222 +* **Annotations linked to structured knowledge graphs** for improved transparency. 223 +* **Interactive annotation editor** allows clinicians to validate AI outputs. 143 143 144 144 ---- 145 145 146 -This **updated methodology** now incorporates [[https:~~/~~/github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/biomarker_ontology>>https://Neuromarker]] for standardized biomarker classification, enabling **cross-disease AI training** across neurodegenerative disorders. 227 +== **6. Collaborative Development** == 228 + 229 +The project is **open to contributions** from **researchers, clinicians, and developers**. 230 + 231 +**Key tools include:** 232 + 233 +* **Jupyter Notebooks**: For data analysis and pipeline development. 234 +** Example: **probabilistic imputation** 235 +* **Wiki Pages**: For documenting methods and results. 236 +* **Drive and Bucket**: For sharing code, data, and outputs. 237 +* **Collaboration with related projects**: 238 +** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 239 + 240 +---- 241 + 242 +== **7. Tools and Technologies** == 243 + 244 +==== **Programming Languages:** ==== 245 + 246 +* **Python** for AI and data processing. 247 + 248 +==== **Frameworks:** ==== 249 + 250 +* **TensorFlow** and **PyTorch** for machine learning. 251 +* **Flask** or **FastAPI** for backend services. 252 + 253 +==== **Visualization:** ==== 254 + 255 +* **Plotly** and **Matplotlib** for interactive and static visualizations. 256 + 257 +==== **EBRAINS Services:** ==== 258 + 259 +* **Collaboratory Lab** for running Notebooks. 260 +* **Buckets** for storing large datasets.