Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 20.1
edited by manuelmenendez
on 2025/02/14 14:47
Change comment: There is no comment for this version
To version 17.1
edited by manuelmenendez
on 2025/02/09 13:01
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,146 +1,154 @@
1 -Here is the updated **Methodology** section for the EBRAINS Wiki, incorporating the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)** for **biomarker classification across all neurodegenerative diseases**.
1 +== **Overview** ==
2 2  
3 +Neurodiagnoses develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility.**
4 +
5 +This methodology integrates **multi-modal data**, including:
6 +**Genetic data** (whole-genome sequencing, polygenic risk scores).
7 +**Neuroimaging** (MRI, PET, EEG, MEG).
8 +**Neurophysiological data** (EEG-based biomarkers, sleep actigraphy).
9 +**CSF & Blood Biomarkers** (Amyloid-beta, Tau, Neurofilament Light).
10 +
11 +By applying **machine learning models**, Neurodiagnoses generates **structured, explainable diagnostic outputs** to assist **clinical decision-making** and **biomarker-driven patient stratification.**
12 +
3 3  ----
4 4  
5 -== **Neurodiagnoses AI: Multimodal AI for Neurodiagnostic Predictions** ==
15 +== **Data Integration & External Databases** ==
6 6  
7 -=== **Project Overview** ===
17 +=== **How to Use External Databases in Neurodiagnoses** ===
8 8  
9 -Neurodiagnoses AI implements **AI-driven diagnostic and prognostic models** for central nervous system (CNS) disorders, expanding the **Florey Dementia Index (FDI) methodology** to a broader set of neurological conditions. The approach integrates **multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics) and employs machine learning models to provide **explainable, real-time diagnostic insights**. This framework now incorporates **Neuromarker**, a **generalized biomarker ontology** that categorizes biomarkers across neurodegenerative diseases, enabling **standardized, cross-disease AI training**.
19 +Neurodiagnoses integrates data from multiple **biomedical and neurological research databases**. Researchers can follow these steps to **access, prepare, and integrate** data into the Neurodiagnoses framework.
10 10  
11 -== **Neuromarker: Generalized Biomarker Ontology** ==
21 +**Potential Data Sources**
22 +**Reference:** [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]]
12 12  
13 -Neuromarker extends the **Common Alzheimer’s Disease Research Ontology (CADRO)** into a **cross-disease biomarker categorization framework** applicable to all neurodegenerative diseases (NDDs). It allows for **standardized classification, AI-based feature extraction, and multimodal integration**.
24 +=== **Register for Access** ===
14 14  
15 -=== **Core Biomarker Categories** ===
26 +Each **external database** requires **individual registration** and approval.
27 +✔️ Follow the official **data access guidelines** of each provider.
28 +✔️ Ensure compliance with **ethical approvals** and **data-sharing agreements (DUAs).**
16 16  
17 -The following ontology is used within **Neurodiagnoses AI** for biomarker categorization:
30 +=== **Download & Prepare Data** ===
18 18  
19 -|=**Category**|=**Description**
20 -|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic)
21 -|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein)
22 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL
23 -|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers
24 -|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers
25 -|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS)
26 -|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores
27 -|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities
32 +Once access is granted, download datasets **following compliance guidelines** and **format requirements** for integration.
28 28  
29 -----
34 +**Supported File Formats**
30 30  
31 -== **How to Use External Databases in Neurodiagnoses** ==
36 +* **Tabular Data**: .csv, .tsv
37 +* **Neuroimaging Data**: .nii, .dcm
38 +* **Genomic Data**: .fasta, .vcf
39 +* **Clinical Metadata**: .json, .xml
32 32  
33 -To enhance diagnostic accuracy, Neurodiagnoses AI integrates data from **multiple biomedical and neurological research databases**. Researchers can follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework.
41 +**Mandatory Fields for Integration**
34 34  
35 -=== **Potential Data Sources** ===
43 +|=**Field Name**|=**Description**
44 +|**Subject ID**|Unique patient identifier
45 +|**Diagnosis**|Standardized disease classification
46 +|**Biomarkers**|CSF, plasma, or imaging biomarkers
47 +|**Genetic Data**|Whole-genome or exome sequencing
48 +|**Neuroimaging Metadata**|MRI/PET acquisition parameters
36 36  
37 -Neurodiagnoses maintains an **updated list** of biomedical datasets relevant to neurodegenerative diseases:
50 +=== **Upload Data to Neurodiagnoses** ===
38 38  
39 -* **ADNI**: Alzheimer's Disease Imaging & Biomarkers → [[ADNI>>url:https://adni.loni.usc.edu/]]
40 -* **PPMI**: Parkinson’s Disease Imaging & Biospecimens → [[PPMI>>url:https://www.ppmi-info.org/]]
41 -* **GP2**: Whole-Genome Sequencing for PD → [[GP2>>url:https://gp2.org/]]
42 -* **Enroll-HD**: Huntington’s Disease Clinical & Genetic Data → [[Enroll-HD>>url:https://www.enroll-hd.org/]]
43 -* **GAAIN**: Multi-Source Alzheimer’s Data Aggregation → [[GAAIN>>url:https://gaain.org/]]
44 -* **UK Biobank**: Population-Wide Genetic, Imaging & Health Records → [[UK Biobank>>url:https://www.ukbiobank.ac.uk/]]
45 -* **DPUK**: Dementia & Aging Data → [[DPUK>>url:https://www.dementiasplatform.uk/]]
46 -* **PRION Registry**: Prion Diseases Clinical & Genetic Data → [[PRION Registry>>url:https://prionregistry.org/]]
47 -* **DECIPHER**: Rare Genetic Disorder Genomic Variants → [[DECIPHER>>url:https://decipher.sanger.ac.uk/]]
52 +**Option 1:** Upload to **EBRAINS Bucket** → [[Neurodiagnoses Data Storage>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]]
53 +**Option 2:** Contribute via **GitHub Repository** → [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]]
48 48  
49 -----
55 +**For large datasets, please contact project administrators before uploading.**
50 50  
51 -== **1. Register for Access** ==
57 +=== **Integrate Data into AI Models** ===
52 52  
53 -* Each external database requires **individual registration and access approval**.
54 -* Ensure compliance with **ethical approvals and data usage agreements** before integrating datasets into Neurodiagnoses.
55 -* Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data.
59 +Use **Jupyter Notebooks** on EBRAINS for **data preprocessing.**
60 +Standardize data using **harmonization tools.**
61 +Train AI models with **newly integrated datasets.**
56 56  
63 +**Reference:** [[Data Processing Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]]
64 +
57 57  ----
58 58  
59 -== **2. Download & Prepare Data** ==
67 +== **AI-Powered Annotation & Machine Learning Models** ==
60 60  
61 -* Download datasets while adhering to **database usage policies**.
62 -* Ensure files meet **Neurodiagnoses format requirements**:
69 +Neurodiagnoses applies **advanced machine learning models** to classify CNS diseases, extract features from **biomarkers and neuroimaging**, and provide **AI-powered annotation.**
63 63  
64 -|=**Data Type**|=**Accepted Formats**
65 -|**Tabular Data**|.csv, .tsv
66 -|**Neuroimaging**|.nii, .dcm
67 -|**Genomic Data**|.fasta, .vcf
68 -|**Clinical Metadata**|.json, .xml
71 +=== **AI Model Categories** ===
69 69  
70 -* **Mandatory Fields for Integration**:
71 -** **Subject ID**: Unique patient identifier
72 -** **Diagnosis**: Standardized disease classification
73 -** **Biomarkers**: CSF, plasma, or imaging biomarkers
74 -** **Genetic Data**: Whole-genome or exome sequencing
75 -** **Neuroimaging Metadata**: MRI/PET acquisition parameters
73 +|=**Model Type**|=**Function**|=**Example Algorithms**
74 +|**Probabilistic Diagnosis**|Assigns probability scores to multiple CNS disorders.|Random Forest, XGBoost, Bayesian Networks
75 +|**Tridimensional Diagnosis**|Classifies disorders based on Etiology, Biomarkers, and Neuroanatomical Correlations.|CNNs, Transformers, Autoencoders
76 +|**Biomarker Prediction**|Predicts missing biomarker values using regression.|KNN Imputation, Bayesian Estimation
77 +|**Neuroimaging Feature Extraction**|Extracts patterns from MRI, PET, EEG.|CNNs, Graph Neural Networks
78 +|**Clinical Decision Support**|Generates AI-driven diagnostic reports.|SHAP Explainability Tools
76 76  
80 +**Reference:** [[AI Model Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/models.md]]
81 +
77 77  ----
78 78  
79 -== **3. Upload Data to Neurodiagnoses** ==
84 +== **Clinical Decision Support & Tridimensional Diagnostic Framework** ==
80 80  
81 -=== **Option 1: Upload to EBRAINS Bucket** ===
86 +Neurodiagnoses generates **structured AI reports** for clinicians, combining:
82 82  
83 -* Location: **EBRAINS Neurodiagnoses Bucket**
84 -* Ensure **correct metadata tagging** before submission.
88 +**Probabilistic Diagnosis:** AI-generated ranking of potential diagnoses.
89 +**Tridimensional Classification:** Standardized diagnostic reports based on:
85 85  
86 -=== **Option 2: Contribute via GitHub Repository** ===
91 +1. **Axis 1:** **Etiology** → Genetic, Autoimmune, Prion, Toxic, Vascular.
92 +1. **Axis 2:** **Molecular Markers** → CSF, Neuroinflammation, EEG biomarkers.
93 +1. **Axis 3:** **Neuroanatomoclinical Correlations** → MRI atrophy, PET.
87 87  
88 -* Location: **GitHub Data Repository**
89 -* Create a **new folder under /data/** and include a **dataset description**.
90 -* **For large datasets**, contact project administrators before uploading.
95 +**Reference:** [[Tridimensional Classification Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/classification.md]]
91 91  
92 92  ----
93 93  
94 -== **4. Integrate Data into AI Models** ==
99 +== **Data Security, Compliance & Federated Learning** ==
95 95  
96 -* Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**.
97 -* **Standardize neuroimaging and biomarker formats** using harmonization tools.
98 -* Use **machine learning models** to handle **missing data** and **feature extraction**.
99 -* Train AI models with **newly integrated patient cohorts**.
101 +✔ **Privacy-Preserving AI**: Implements **Federated Learning**, ensuring that patient data **never leaves** local institutions.
102 +✔ **Secure Data Access**: Data remains **stored in EBRAINS MIP servers** using **differential privacy techniques.**
103 +✔ **Ethical & GDPR Compliance**: Data-sharing agreements **must be signed** before use.
100 100  
101 -**Reference**: See docs/data_processing.md for detailed instructions.
105 +**Reference:** [[Data Protection & Federated Learning>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/security.md]]
102 102  
103 103  ----
104 104  
105 -== **AI-Driven Biomarker Categorization** ==
109 +== **Data Processing & Integration with Clinica.Run** ==
106 106  
107 -Neurodiagnoses employs **AI models** for biomarker classification:
111 +Neurodiagnoses now supports **Clinica.Run**, an **open-source neuroimaging platform** for **multimodal data processing.**
108 108  
109 -|=**Model Type**|=**Application**
110 -|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases
111 -|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers
112 -|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data
113 +=== **How It Works** ===
113 113  
114 -----
115 +✔ **Neuroimaging Preprocessing**: MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines.**
116 +✔ **Automated Biomarker Extraction**: Extracts volumetric, metabolic, and functional biomarkers.
117 +✔ **Data Security & Compliance**: Clinica.Run is **GDPR & HIPAA-compliant.**
115 115  
116 -== **Collaboration & Partnerships** ==
119 +=== **Implementation Steps** ===
117 117  
118 -=== **Partnering with Data Providers** ===
121 +1. Install **Clinica.Run** dependencies.
122 +1. Configure **Clinica.Run pipeline** in clinica_run_config.json.
123 +1. Run **biomarker extraction pipelines** for AI-based diagnostics.
119 119  
120 -Neurodiagnoses seeks partnerships with data repositories to:
125 +**Reference:** [[Clinica.Run Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/clinica_run.md]]
121 121  
122 -* Enable **API-based data integration** for real-time processing.
123 -* Co-develop **harmonized AI-ready datasets** with standardized annotations.
124 -* Secure **funding opportunities** through joint grant applications.
127 +----
125 125  
126 -**Interested in Partnering?**
129 +== **Collaborative Development & Research** ==
127 127  
128 -* If you represent a **research consortium or database provider**, reach out to explore **data-sharing agreements**.
129 -* **Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]
131 +**We Use GitHub to Develop AI Models & Store Research Data**
130 130  
131 -----
133 +* **GitHub Repository:** AI model training scripts.
134 +* **GitHub Issues:** Tracks ongoing research questions.
135 +* **GitHub Wiki:** Project documentation & user guides.
132 132  
133 -== **Final Notes** ==
137 +**We Use EBRAINS for Data & Collaboration**
134 134  
135 -Neurodiagnoses continuously expands its **data ecosystem** to support **AI-driven clinical decision-making**. Researchers and institutions are encouraged to **contribute new datasets and methodologies**.
139 +* **EBRAINS Buckets:** Large-scale neuroimaging and biomarker storage.
140 +* **EBRAINS Jupyter Notebooks:** Cloud-based AI model execution.
141 +* **EBRAINS Wiki:** Research documentation and updates.
136 136  
137 -**For additional technical documentation**:
143 +**Join the Project Forum:** [[GitHub Discussions>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]
138 138  
139 -* **GitHub Repository**: [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]]
140 -* **EBRAINS Collaboration Page**: [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]]
145 +----
141 141  
142 -**If you experience issues integrating data**, open a **GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**.
147 +**For Additional Documentation:**
143 143  
149 +* **GitHub Repository:** [[Neurodiagnoses AI Models>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]]
150 +* **EBRAINS Wiki:** [[Neurodiagnoses Research Collaboration>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]]
151 +
144 144  ----
145 145  
146 -This **updated methodology** now incorporates [[https:~~/~~/github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/biomarker_ontology>>https://Neuromarker]] for standardized biomarker classification, enabling **cross-disease AI training** across neurodegenerative disorders.
154 +**Neurodiagnoses is Open for Contributions Join Us Today!**