Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 20.1
edited by manuelmenendez
on 2025/02/14 14:47
on 2025/02/14 14:47
Change comment:
There is no comment for this version
To version 17.1
edited by manuelmenendez
on 2025/02/09 13:01
on 2025/02/09 13:01
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,146 +1,154 @@ 1 - Hereis the updated**Methodology** section for the EBRAINS Wiki, incorporating the **Generalized Neuro BiomarkerOntology Categorization (Neuromarker)** for **biomarker classification across all neurodegenerative diseases**.1 +== **Overview** == 2 2 3 +Neurodiagnoses develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility.** 4 + 5 +This methodology integrates **multi-modal data**, including: 6 +**Genetic data** (whole-genome sequencing, polygenic risk scores). 7 +**Neuroimaging** (MRI, PET, EEG, MEG). 8 +**Neurophysiological data** (EEG-based biomarkers, sleep actigraphy). 9 +**CSF & Blood Biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 10 + 11 +By applying **machine learning models**, Neurodiagnoses generates **structured, explainable diagnostic outputs** to assist **clinical decision-making** and **biomarker-driven patient stratification.** 12 + 3 3 ---- 4 4 5 -== ** Neurodiagnoses AI: MultimodalAIfor NeurodiagnosticPredictions** ==15 +== **Data Integration & External Databases** == 6 6 7 -=== ** ProjectOverview** ===17 +=== **How to Use External Databases in Neurodiagnoses** === 8 8 9 -Neurodiagnoses AIimplements **AI-driven diagnostic and prognostic models**for centralnervous system(CNS) disorders, expanding the **Florey DementiaIndex (FDI) methodology**toabroaderset ofneurologicalconditions. Thepproachintegrates **multimodal dataources**(EEG, neuroimaging, biomarkers,and genetics)andemploysmachinelearningmodels toprovide**explainable, real-timediagnosticinsights**. This framework now incorporates**Neuromarker**,a**generalizedbiomarker ontology**that categorizesbiomarkers across neurodegenerative diseases, enabling**standardized, cross-diseaseAI training**.19 +Neurodiagnoses integrates data from multiple **biomedical and neurological research databases**. Researchers can follow these steps to **access, prepare, and integrate** data into the Neurodiagnoses framework. 10 10 11 -== **Neuromarker: Generalized Biomarker Ontology** == 21 +**Potential Data Sources** 22 +**Reference:** [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 12 12 13 - Neuromarkerextends the**Common Alzheimer’s DiseaseResearch Ontology (CADRO)**into a **cross-disease biomarker categorizationframework**applicableto all neurodegenerative diseases (NDDs). It allows for**standardizedclassification, AI-based feature extraction, and multimodal integration**.24 +=== **Register for Access** === 14 14 15 -=== **Core Biomarker Categories** === 26 +Each **external database** requires **individual registration** and approval. 27 +✔️ Follow the official **data access guidelines** of each provider. 28 +✔️ Ensure compliance with **ethical approvals** and **data-sharing agreements (DUAs).** 16 16 17 - Thefollowing ontology is usedwithin**Neurodiagnoses AI** for biomarkercategorization:30 +=== **Download & Prepare Data** === 18 18 19 -|=**Category**|=**Description** 20 -|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 21 -|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 22 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL 23 -|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 24 -|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 25 -|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 26 -|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 27 -|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 32 +Once access is granted, download datasets **following compliance guidelines** and **format requirements** for integration. 28 28 29 - ----34 +**Supported File Formats** 30 30 31 -== **How to Use External Databases in Neurodiagnoses** == 36 +* **Tabular Data**: .csv, .tsv 37 +* **Neuroimaging Data**: .nii, .dcm 38 +* **Genomic Data**: .fasta, .vcf 39 +* **Clinical Metadata**: .json, .xml 32 32 33 - To enhancediagnostic accuracy,Neurodiagnoses AI integrates data from **multiple biomedical and neurological researchdatabases**. Researchers canfollow these steps to access, prepare,and integrate dataintothe Neurodiagnoses framework.41 +**Mandatory Fields for Integration** 34 34 35 -=== **Potential Data Sources** === 43 +|=**Field Name**|=**Description** 44 +|**Subject ID**|Unique patient identifier 45 +|**Diagnosis**|Standardized disease classification 46 +|**Biomarkers**|CSF, plasma, or imaging biomarkers 47 +|**Genetic Data**|Whole-genome or exome sequencing 48 +|**Neuroimaging Metadata**|MRI/PET acquisition parameters 36 36 37 - Neurodiagnosesmaintains an**updatedlist**of biomedicaldatasetsrelevanttoneurodegenerative diseases:50 +=== **Upload Data to Neurodiagnoses** === 38 38 39 -* **ADNI**: Alzheimer's Disease Imaging & Biomarkers → [[ADNI>>url:https://adni.loni.usc.edu/]] 40 -* **PPMI**: Parkinson’s Disease Imaging & Biospecimens → [[PPMI>>url:https://www.ppmi-info.org/]] 41 -* **GP2**: Whole-Genome Sequencing for PD → [[GP2>>url:https://gp2.org/]] 42 -* **Enroll-HD**: Huntington’s Disease Clinical & Genetic Data → [[Enroll-HD>>url:https://www.enroll-hd.org/]] 43 -* **GAAIN**: Multi-Source Alzheimer’s Data Aggregation → [[GAAIN>>url:https://gaain.org/]] 44 -* **UK Biobank**: Population-Wide Genetic, Imaging & Health Records → [[UK Biobank>>url:https://www.ukbiobank.ac.uk/]] 45 -* **DPUK**: Dementia & Aging Data → [[DPUK>>url:https://www.dementiasplatform.uk/]] 46 -* **PRION Registry**: Prion Diseases Clinical & Genetic Data → [[PRION Registry>>url:https://prionregistry.org/]] 47 -* **DECIPHER**: Rare Genetic Disorder Genomic Variants → [[DECIPHER>>url:https://decipher.sanger.ac.uk/]] 52 +**Option 1:** Upload to **EBRAINS Bucket** → [[Neurodiagnoses Data Storage>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]] 53 +**Option 2:** Contribute via **GitHub Repository** → [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]] 48 48 49 - ----55 +**For large datasets, please contact project administrators before uploading.** 50 50 51 -== ** 1. RegisterforAccess** ==57 +=== **Integrate Data into AI Models** === 52 52 53 - * Eachexternaldatabaserequires**individualregistration and accessapproval**.54 - * Ensure compliance with **ethical approvals and data usageagreements** before integratingdatasets intoNeurodiagnoses.55 - *Somerepositoriesmay requirea**Data UsageAgreement(DUA)** for sensitivemedicaldata.59 +Use **Jupyter Notebooks** on EBRAINS for **data preprocessing.** 60 +Standardize data using **harmonization tools.** 61 +Train AI models with **newly integrated datasets.** 56 56 63 +**Reference:** [[Data Processing Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]] 64 + 57 57 ---- 58 58 59 -== ** 2. Download&PrepareData** ==67 +== **AI-Powered Annotation & Machine Learning Models** == 60 60 61 -* Download datasets while adhering to **database usage policies**. 62 -* Ensure files meet **Neurodiagnoses format requirements**: 69 +Neurodiagnoses applies **advanced machine learning models** to classify CNS diseases, extract features from **biomarkers and neuroimaging**, and provide **AI-powered annotation.** 63 63 64 -|=**Data Type**|=**Accepted Formats** 65 -|**Tabular Data**|.csv, .tsv 66 -|**Neuroimaging**|.nii, .dcm 67 -|**Genomic Data**|.fasta, .vcf 68 -|**Clinical Metadata**|.json, .xml 71 +=== **AI Model Categories** === 69 69 70 -* *Mandatory Fieldsfor Integration**:71 -** **SubjectID**: Uniquepatient identifier72 -** **Diagnosis**: Standardizeddiseaseclassification73 -** **Biomarkers**:CSF, plasma,oraging biomarkers74 -** **GeneticData**:Whole-genomeorexomesequencing75 -** **NeuroimagingMetadata**:MRI/PETacquisitionparameters73 +|=**Model Type**|=**Function**|=**Example Algorithms** 74 +|**Probabilistic Diagnosis**|Assigns probability scores to multiple CNS disorders.|Random Forest, XGBoost, Bayesian Networks 75 +|**Tridimensional Diagnosis**|Classifies disorders based on Etiology, Biomarkers, and Neuroanatomical Correlations.|CNNs, Transformers, Autoencoders 76 +|**Biomarker Prediction**|Predicts missing biomarker values using regression.|KNN Imputation, Bayesian Estimation 77 +|**Neuroimaging Feature Extraction**|Extracts patterns from MRI, PET, EEG.|CNNs, Graph Neural Networks 78 +|**Clinical Decision Support**|Generates AI-driven diagnostic reports.|SHAP Explainability Tools 76 76 80 +**Reference:** [[AI Model Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/models.md]] 81 + 77 77 ---- 78 78 79 -== ** 3. UploadData toNeurodiagnoses** ==84 +== **Clinical Decision Support & Tridimensional Diagnostic Framework** == 80 80 81 - === **Option1: UploadtoEBRAINSBucket**===86 +Neurodiagnoses generates **structured AI reports** for clinicians, combining: 82 82 83 -* Location:EBRAINS NeurodiagnosesBucket**84 -* Ensure**correctmetadatatagging**beforesubmission.88 +**Probabilistic Diagnosis:** AI-generated ranking of potential diagnoses. 89 +**Tridimensional Classification:** Standardized diagnostic reports based on: 85 85 86 -=== **Option 2: Contribute via GitHub Repository** === 91 +1. **Axis 1:** **Etiology** → Genetic, Autoimmune, Prion, Toxic, Vascular. 92 +1. **Axis 2:** **Molecular Markers** → CSF, Neuroinflammation, EEG biomarkers. 93 +1. **Axis 3:** **Neuroanatomoclinical Correlations** → MRI atrophy, PET. 87 87 88 -* Location: **GitHub Data Repository** 89 -* Create a **new folder under /data/** and include a **dataset description**. 90 -* **For large datasets**, contact project administrators before uploading. 95 +**Reference:** [[Tridimensional Classification Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/classification.md]] 91 91 92 92 ---- 93 93 94 -== ** 4. IntegrateData intoAIModels** ==99 +== **Data Security, Compliance & Federated Learning** == 95 95 96 -* Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**. 97 -* **Standardize neuroimaging and biomarker formats** using harmonization tools. 98 -* Use **machine learning models** to handle **missing data** and **feature extraction**. 99 -* Train AI models with **newly integrated patient cohorts**. 101 +✔ **Privacy-Preserving AI**: Implements **Federated Learning**, ensuring that patient data **never leaves** local institutions. 102 +✔ **Secure Data Access**: Data remains **stored in EBRAINS MIP servers** using **differential privacy techniques.** 103 +✔ **Ethical & GDPR Compliance**: Data-sharing agreements **must be signed** before use. 100 100 101 -**Reference** :See docs/data_processing.mdfordetailed instructions.105 +**Reference:** [[Data Protection & Federated Learning>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/security.md]] 102 102 103 103 ---- 104 104 105 -== ** AI-DrivenBiomarkerCategorization** ==109 +== **Data Processing & Integration with Clinica.Run** == 106 106 107 -Neurodiagnoses employs **AImodels** forbiomarker classification:111 +Neurodiagnoses now supports **Clinica.Run**, an **open-source neuroimaging platform** for **multimodal data processing.** 108 108 109 -|=**Model Type**|=**Application** 110 -|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 111 -|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 112 -|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 113 +=== **How It Works** === 113 113 114 ----- 115 +✔ **Neuroimaging Preprocessing**: MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines.** 116 +✔ **Automated Biomarker Extraction**: Extracts volumetric, metabolic, and functional biomarkers. 117 +✔ **Data Security & Compliance**: Clinica.Run is **GDPR & HIPAA-compliant.** 115 115 116 -== ** Collaboration& Partnerships** ==119 +=== **Implementation Steps** === 117 117 118 -=== **Partnering with Data Providers** === 121 +1. Install **Clinica.Run** dependencies. 122 +1. Configure **Clinica.Run pipeline** in clinica_run_config.json. 123 +1. Run **biomarker extraction pipelines** for AI-based diagnostics. 119 119 120 - Neurodiagnoses seeks partnershipswithta repositoriesto:125 +**Reference:** [[Clinica.Run Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/clinica_run.md]] 121 121 122 -* Enable **API-based data integration** for real-time processing. 123 -* Co-develop **harmonized AI-ready datasets** with standardized annotations. 124 -* Secure **funding opportunities** through joint grant applications. 127 +---- 125 125 126 -** InterestedinPartnering?**129 +== **Collaborative Development & Research** == 127 127 128 -* If you represent a **research consortium or database provider**, reach out to explore **data-sharing agreements**. 129 -* **Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 131 +**We Use GitHub to Develop AI Models & Store Research Data** 130 130 131 ----- 133 +* **GitHub Repository:** AI model training scripts. 134 +* **GitHub Issues:** Tracks ongoing research questions. 135 +* **GitHub Wiki:** Project documentation & user guides. 132 132 133 - ==**FinalNotes**==137 +**We Use EBRAINS for Data & Collaboration** 134 134 135 -Neurodiagnoses continuously expands its **data ecosystem** to support **AI-driven clinical decision-making**. Researchers and institutions are encouraged to **contribute new datasets and methodologies**. 139 +* **EBRAINS Buckets:** Large-scale neuroimaging and biomarker storage. 140 +* **EBRAINS Jupyter Notebooks:** Cloud-based AI model execution. 141 +* **EBRAINS Wiki:** Research documentation and updates. 136 136 137 -**For additionaltechnicaldocumentation**:143 +**Join the Project Forum:** [[GitHub Discussions>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]] 138 138 139 -* **GitHub Repository**: [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]] 140 -* **EBRAINS Collaboration Page**: [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]] 145 +---- 141 141 142 -** If you experienceissues integrating data**,open**GitHub Issue**orconsulthe **EBRAINS Neurodiagnoses Forum**.147 +**For Additional Documentation:** 143 143 149 +* **GitHub Repository:** [[Neurodiagnoses AI Models>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]] 150 +* **EBRAINS Wiki:** [[Neurodiagnoses Research Collaboration>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]] 151 + 144 144 ---- 145 145 146 - This**updated methodology** now incorporates [[https:~~/~~/github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/biomarker_ontology>>https://Neuromarker]]forstandardizedbiomarker classification,enabling**cross-disease AI training**acrossneurodegenerative disorders.154 +**Neurodiagnoses is Open for Contributions – Join Us Today!**