Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 20.1
edited by manuelmenendez
on 2025/02/14 14:47
on 2025/02/14 14:47
Change comment:
There is no comment for this version
To version 28.1
edited by manuelmenendez
on 2025/03/14 08:31
on 2025/03/14 08:31
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,25 +1,21 @@ 1 - Here is theupdated**Methodology**sectionfor theEBRAINSWiki,incorporatingthe **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)**for **biomarker classification across allneurodegenerativediseases**.1 +**Neurodiagnoses AI** is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. It encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker) **and** Disease Knowledge Transfer (DKT)**, which standardizes disease and biomarker classification across all CNS diseases, facilitating cross-disease AI training. 2 2 3 - ----3 +**Neuromarker: Generalized Biomarker Ontology** 4 4 5 - == **NeurodiagnosesAI:MultimodalAIforNeurodiagnosticPredictions**==5 +Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration. 6 6 7 - ===**Project Overview**===7 +**Recommended Software** 8 8 9 - NeurodiagnosesAIimplements**AI-driven diagnosticand prognostic models**forcentral nervoussystem(CNS) disorders, expandingthe**Florey DementiaIndex (FDI) methodology** to a broadersetof neurologicalconditions. Theapproachintegrates**multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics)andemploys machinelearning modelsoprovide**explainable,real-timeiagnostic insights**.This framework now incorporates**Neuromarker**, a **generalized biomarkerntology** thatcategorizes biomarkersacrossneurodegenerative diseases, enabling **standardized,cross-disease AItraining**.9 +There is a suite of software that can help implement the workflow needed in Neurodiagnoses. Find a list of recommendations [[here>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/recommended_software]]. 10 10 11 - ==**Neuromarker:GeneralizedBiomarkerOntology**==11 +**Core Biomarker Categories** 12 12 13 - Neuromarker extendsthe**Common Alzheimer’s Disease Research Ontology (CADRO)** intoa **cross-diseasebiomarkercategorizationframework**applicable toll neurodegenerative diseases(NDDs). Itallows for**standardizedclassification,AI-basedfeature extraction, and multimodalintegration**.13 +Within the Neurodiagnoses AI framework, biomarkers are categorized as follows: 14 14 15 -=== **Core Biomarker Categories** === 16 - 17 -The following ontology is used within **Neurodiagnoses AI** for biomarker categorization: 18 - 19 19 |=**Category**|=**Description** 20 20 |**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 21 21 |**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 22 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL 18 +|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL, autoantiboides 23 23 |**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 24 24 |**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 25 25 |**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) ... ... @@ -26,121 +26,195 @@ 26 26 |**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 27 27 |**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 28 28 29 - ----25 +**Integrating External Databases into Neurodiagnoses** 30 30 31 - == **HowtoUseExternalDatabases inNeurodiagnoses**==27 +To enhance diagnostic precision, Neurodiagnoses AI incorporates data from multiple biomedical and neurological research databases. Researchers can integrate external datasets by following these steps: 32 32 33 -To enhance diagnostic accuracy, Neurodiagnoses AI integrates data from **multiple biomedical and neurological research databases**. Researchers can follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework. 29 +1. ((( 30 +**Register for Access** 34 34 35 -=== **Potential Data Sources** === 32 +* Each external database requires individual registration and access approval. 33 +* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses. 34 +* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data. 35 +))) 36 +1. ((( 37 +**Download & Prepare Data** 36 36 37 -Neurodiagnoses maintains an **updated list** of biomedical datasets relevant to neurodegenerative diseases: 39 +* Download datasets while adhering to database usage policies. 40 +* ((( 41 +Ensure files meet Neurodiagnoses format requirements: 38 38 39 -* **ADNI**: Alzheimer's Disease Imaging & Biomarkers → [[ADNI>>url:https://adni.loni.usc.edu/]] 40 -* **PPMI**: Parkinson’s Disease Imaging & Biospecimens → [[PPMI>>url:https://www.ppmi-info.org/]] 41 -* **GP2**: Whole-Genome Sequencing for PD → [[GP2>>url:https://gp2.org/]] 42 -* **Enroll-HD**: Huntington’s Disease Clinical & Genetic Data → [[Enroll-HD>>url:https://www.enroll-hd.org/]] 43 -* **GAAIN**: Multi-Source Alzheimer’s Data Aggregation → [[GAAIN>>url:https://gaain.org/]] 44 -* **UK Biobank**: Population-Wide Genetic, Imaging & Health Records → [[UK Biobank>>url:https://www.ukbiobank.ac.uk/]] 45 -* **DPUK**: Dementia & Aging Data → [[DPUK>>url:https://www.dementiasplatform.uk/]] 46 -* **PRION Registry**: Prion Diseases Clinical & Genetic Data → [[PRION Registry>>url:https://prionregistry.org/]] 47 -* **DECIPHER**: Rare Genetic Disorder Genomic Variants → [[DECIPHER>>url:https://decipher.sanger.ac.uk/]] 43 +|=**Data Type**|=**Accepted Formats** 44 +|**Tabular Data**|.csv, .tsv 45 +|**Neuroimaging**|.nii, .dcm 46 +|**Genomic Data**|.fasta, .vcf 47 +|**Clinical Metadata**|.json, .xml 48 +))) 49 +* ((( 50 +**Mandatory Fields for Integration**: 48 48 49 ----- 52 +* Subject ID: Unique patient identifier 53 +* Diagnosis: Standardized disease classification 54 +* Biomarkers: CSF, plasma, or imaging biomarkers 55 +* Genetic Data: Whole-genome or exome sequencing 56 +* Neuroimaging Metadata: MRI/PET acquisition parameters 57 +))) 58 +))) 59 +1. ((( 60 +**Upload Data to Neurodiagnoses** 50 50 51 -== **1. Register for Access** == 62 +* ((( 63 +**Option 1: Upload to EBRAINS Bucket** 52 52 53 -* Each external database requires **individual registration and access approval**. 54 -* Ensure compliance with **ethical approvals and data usage agreements** before integrating datasets into Neurodiagnoses. 55 -* Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data. 65 +* Location: EBRAINS Neurodiagnoses Bucket 66 +* Ensure correct metadata tagging before submission. 67 +))) 68 +* ((( 69 +**Option 2: Contribute via GitHub Repository** 56 56 57 ----- 71 +* Location: GitHub Data Repository 72 +* Create a new folder under /data/ and include a dataset description. 73 +* For large datasets, contact project administrators before uploading. 74 +))) 75 +))) 76 +1. ((( 77 +**Integrate Data into AI Models** 58 58 59 -== **2. Download & Prepare Data** == 79 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 80 +* Standardize neuroimaging and biomarker formats using harmonization tools. 81 +* Utilize machine learning models to handle missing data and feature extraction. 82 +* Train AI models with newly integrated patient cohorts. 60 60 61 -* Downloaddatasetswhile adheringto**databaseusage policies**.62 - * Ensure files meet **Neurodiagnoses format requirements**:84 +**Reference**: See docs/data_processing.md for detailed instructions. 85 +))) 63 63 64 -|=**Data Type**|=**Accepted Formats** 65 -|**Tabular Data**|.csv, .tsv 66 -|**Neuroimaging**|.nii, .dcm 67 -|**Genomic Data**|.fasta, .vcf 68 -|**Clinical Metadata**|.json, .xml 87 +**AI-Driven Biomarker Categorization** 69 69 70 -* **Mandatory Fields for Integration**: 71 -** **Subject ID**: Unique patient identifier 72 -** **Diagnosis**: Standardized disease classification 73 -** **Biomarkers**: CSF, plasma, or imaging biomarkers 74 -** **Genetic Data**: Whole-genome or exome sequencing 75 -** **Neuroimaging Metadata**: MRI/PET acquisition parameters 89 +Neurodiagnoses employs advanced AI models for biomarker classification: 76 76 77 ----- 91 +|=**Model Type**|=**Application** 92 +|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 93 +|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 94 +|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 78 78 79 -== ** 3. Upload Datato Neurodiagnoses** ==96 +=== **Jupyter Integration with EBRAINS** === 80 80 81 -=== **O ption 1: Upload to EBRAINS Bucket** ===98 +=== **Overview** === 82 82 83 -* Location: **EBRAINS Neurodiagnoses Bucket** 84 -* Ensure **correct metadata tagging** before submission. 100 +Neurodiagnoses Open Source leverages **Jupyter Notebooks from EBRAINS** to facilitate neurodiagnostic research, biomarker analysis, and AI-driven data processing. This integration provides an interactive and reproducible environment for developing machine learning models, analyzing neuroimaging data, and exploring multimodal biomarkers. Jupyter integration in EBRAINS empowers **Neurodiagnoses Open Source** to: ✅ **Analyze MRI, EEG, and biomarker data efficiently**. ✅ **Train machine learning models with high-performance computing**. ✅ **Ensure transparency with interactive explainability tools**. ✅ **Enable collaborative neurodiagnostic research with reproducible notebooks**. 85 85 86 -=== ** Option2: ContributeviaGitHub Repository** ===102 +=== **Key Capabilities of Jupyter in Neurodiagnoses** === 87 87 88 -* Location: **GitHub Data Repository** 89 -* Create a **new folder under /data/** and include a **dataset description**. 90 -* **For large datasets**, contact project administrators before uploading. 104 +==== **1. Neuroimaging Analysis (MRI, fMRI, PET)** ==== 91 91 92 ----- 106 +* **Preprocessing Pipelines:** 107 +** Use **Nipype, NiLearn, ANTs, and FreeSurfer** for structural and functional MRI analysis. 108 +** Skull stripping, segmentation, and registration of MRI scans. 109 +** Entropy-based slice selection for training deep learning models. 110 +* **Deep Learning for Neuroimaging:** 111 +** Implement **CNN-based models (ResNet, VGG16, Autoencoders)** for biomarker extraction. 112 +** Feature-based classification of **Alzheimer’s, Parkinson’s, and MCI** from neuroimaging data. 93 93 94 -== ** 4.IntegrateDataintoAI Models** ==114 +==== **2. EEG and MEG Signal Processing** ==== 95 95 96 -* Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**. 97 -* **Standardize neuroimaging and biomarker formats** using harmonization tools. 98 -* Use **machine learning models** to handle **missing data** and **feature extraction**. 99 -* Train AI models with **newly integrated patient cohorts**. 116 +* **Data Preprocessing & Artifact Removal:** 117 +** Use **MNE-Python** for filtering, ICA-based artifact rejection, and time-series normalization. 118 +** Extract frequency and time-domain features from EEG/MEG signals. 119 +* **Feature Engineering & Connectivity Analysis:** 120 +** Functional connectivity analysis using **coherence and phase synchronization metrics**. 121 +** Graph-theory-based EEG biomarkers for neurodegenerative disease classification. 122 +* **Deep Learning for EEG Analysis:** 123 +** Train LSTMs and CNNs for automatic EEG-based classification of MCI and cognitive decline. 100 100 101 -** Reference**:See docs/data_processing.mdfordetailedinstructions.125 +==== **3. Machine Learning for Biomarker Discovery** ==== 102 102 103 ----- 127 +* **SHAP-based Explainability for Biomarkers:** 128 +** Use **Random Forest + SHAP** to rank the most predictive CSF, blood, and imaging biomarkers. 129 +** Generate SHAP summary plots to interpret the impact of individual biomarkers. 130 +* **Multi-Modal Feature Selection:** 131 +** Implement **Anchor-Graph Feature Selection** to combine MRI, EEG, and CSF data. 132 +** PCA and autoencoders for dimensionality reduction and feature extraction. 133 +* **Automated Risk Prediction Models:** 134 +** Train ensemble models combining **deep learning and classical ML algorithms**. 135 +** Apply **subject-level cross-validation** to prevent data leakage and ensure reproducibility. 104 104 105 -== ** AI-DrivenBiomarker Categorization** ==137 +==== **4. Computational Simulations & Virtual Brain Models** ==== 106 106 107 -Neurodiagnoses employs **AI models** for biomarker classification: 139 +* **Integration with The Virtual Brain (TVB):** 140 +** Simulate large-scale brain networks based on individual neuroimaging data. 141 +** Model the effect of neurodegenerative progression on brain activity. 142 +* **Cortical and Subcortical Connectivity Analysis:** 143 +** Generate connectivity matrices using diffusion MRI and functional MRI correlations. 144 +** Validate computational simulations with real patient data from EBRAINS datasets. 108 108 109 -|=**Model Type**|=**Application** 110 -|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 111 -|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 112 -|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 146 +==== **5. Interactive Data Visualization & Reporting** ==== 113 113 114 ----- 148 +* **Dynamic Plots & Dashboards:** 149 +** Use **Matplotlib, Seaborn, Plotly** for interactive visualizations of biomarkers. 150 +** Implement real-time MRI slice rendering and EEG signal visualization. 151 +* **Automated Report Generation:** 152 +** Generate **Jupyter-based PDF reports** summarizing key findings. 153 +** Export analysis results in JSON, CSV, and interactive web dashboards. 115 115 116 -== ** Collaboration&Partnerships** ==155 +=== **How to Use Neurodiagnoses with Jupyter in EBRAINS** === 117 117 118 -=== ** PartneringwithData Providers** ===157 +==== **1. Access EBRAINS Jupyter Environment** ==== 119 119 120 -Neurodiagnoses seeks partnerships with data repositories to: 159 +1. Create an **EBRAINS account** at [[EBRAINS.eu>>url:https://ebrains.eu/]]. 160 +1. Navigate to the **Collaboratory** and open the Jupyter Lab interface. 161 +1. Clone the Neurodiagnoses repository: 121 121 122 -* Enable **API-based data integration** for real-time processing. 123 -* Co-develop **harmonized AI-ready datasets** with standardized annotations. 124 -* Secure **funding opportunities** through joint grant applications. 163 +{{{git clone https://github.com/neurodiagnoses 164 +cd neurodiagnoses 165 +pip install -r requirements.txt 166 +}}} 125 125 126 -** InterestedPartnering?**168 +==== **2. Run Prebuilt Neurodiagnoses Notebooks** ==== 127 127 128 -* If you represent a **research consortium or database provider**, reach out to explore **data-sharing agreements**. 129 -* **Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 170 +1. Open the **notebooks/** directory inside Jupyter. 171 +1. Run any of the available notebooks: 172 +1*. mri_biomarker_analysis.ipynb → Extracts MRI-based biomarkers. 173 +1*. eeg_preprocessing.ipynb → Cleans and processes EEG signals. 174 +1*. shap_biomarker_explainability.ipynb → Visualizes biomarker importance. 175 +1*. disease_risk_prediction.ipynb → Runs ML models for disease classification. 130 130 131 - ----177 +==== **3. Train Custom AI Models on EBRAINS HPC Resources** ==== 132 132 133 - ==**FinalNotes**==179 +* Use EBRAINS **GPU and HPC clusters** for deep learning training: 134 134 135 -Neurodiagnoses continuously expands its **data ecosystem** to support **AI-driven clinical decision-making**. Researchers and institutions are encouraged to **contribute new datasets and methodologies**. 181 +{{{from neurodiagnoses.models import train_cnn_model 182 +train_cnn_model(data_path='data/mri/', model_type='ResNet50') 183 +}}} 184 +* Save trained models for deployment: 136 136 137 -**For additional technical documentation**: 186 +{{{model.save('models/neurodiagnoses_cnn.h5') 187 +}}} 138 138 139 -* **GitHub Repository**: [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]] 140 -* **EBRAINS Collaboration Page**: [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]] 189 +For further developments, contribute to the **[[Neurodiagnoses GitHub Repository>>url:https://github.com/neurodiagnoses]]**. 141 141 142 -** If you experience issues integrating data**,opena**GitHub Issue** orconsult the **EBRAINS Neurodiagnoses Forum**.191 +**Collaboration & Partnerships** 143 143 144 - ----193 +Neurodiagnoses actively seeks partnerships with data providers to: 145 145 146 -This **updated methodology** now incorporates [[https:~~/~~/github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/biomarker_ontology>>https://Neuromarker]] for standardized biomarker classification, enabling **cross-disease AI training** across neurodegenerative disorders. 195 +* Enable API-based data integration for real-time processing. 196 +* Co-develop harmonized AI-ready datasets with standardized annotations. 197 +* Secure funding opportunities through joint grant applications. 198 + 199 +**Interested in Partnering?** 200 + 201 +If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 202 + 203 +**Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 204 + 205 +**Final Notes** 206 + 207 +Neurodiagnoses AI is committed to advancing the integration of artificial intelligence in neurodiagnostic processes. By continuously expanding our data ecosystem and incorporating standardized biomarker classifications through the Neuromarker ontology, we aim to enhance cross-disease AI training and improve diagnostic accuracy across neurodegenerative disorders. 208 + 209 +We encourage researchers and institutions to contribute new datasets and methodologies to further enrich this collaborative platform. Your participation is vital in driving innovation and fostering a deeper understanding of complex neurological conditions. 210 + 211 +**For additional technical documentation and collaboration opportunities:** 212 + 213 +* **GitHub Repository:** [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]] 214 +* **EBRAINS Collaboration Page:** [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]] 215 + 216 +If you encounter any issues during data integration or have suggestions for improvement, please open a GitHub Issue or consult the EBRAINS Neurodiagnoses Forum. Together, we can advance the field of neurodiagnostics and contribute to better patient outcomes.
- workflow neurodiagnoses.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.manuelmenendez - Size
-
... ... @@ -1,0 +1,1 @@ 1 +157.5 KB - Content