Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 20.1
edited by manuelmenendez
on 2025/02/14 14:47
on 2025/02/14 14:47
Change comment:
There is no comment for this version
To version 4.2
edited by manuelmenendez
on 2025/01/29 19:10
on 2025/01/29 19:10
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,146 +1,109 @@ 1 - Hereis the updated**Methodology** section for the EBRAINS Wiki, incorporating the **Generalized Neuro BiomarkerOntology Categorization (Neuromarker)** for **biomarker classification across all neurodegenerative diseases**.1 +=== **Overview** === 2 2 3 +This section describes the step-by-step process used in the **Neurodiagnoses** project to develop a novel diagnostic framework for neurological diseases. The methodology integrates artificial intelligence (AI), biomedical ontologies, and computational neuroscience to create a structured, interpretable, and scalable diagnostic system. 4 + 3 3 ---- 4 4 5 -== ** NeurodiagnosesAI: MultimodalAIfor Neurodiagnostic Predictions** ==7 +=== **1. Data Integration** === 6 6 7 -=== ** ProjectOverview** ===9 +==== **Data Sources** ==== 8 8 9 -Neurodiagnoses AI implements **AI-driven diagnostic and prognostic models** for central nervous system (CNS) disorders, expanding the **Florey Dementia Index (FDI) methodology** to a broader set of neurological conditions. The approach integrates **multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics) and employs machine learning models to provide **explainable, real-time diagnostic insights**. This framework now incorporates **Neuromarker**, a **generalized biomarker ontology** that categorizes biomarkers across neurodegenerative diseases, enabling **standardized, cross-disease AI training**. 11 +* **Biomedical Ontologies**: 12 +** Human Phenotype Ontology (HPO) for phenotypic abnormalities. 13 +** Gene Ontology (GO) for molecular and cellular processes. 14 +* **Neuroimaging Datasets**: 15 +** Example: Alzheimer’s Disease Neuroimaging Initiative (ADNI), OpenNeuro. 16 +* **Clinical and Biomarker Data**: 17 +** Anonymized clinical reports, molecular biomarkers, and test results. 10 10 11 -== **Neuromarker: Generalized Biomarker Ontology** == 12 12 13 - Neuromarkerextends the**Common Alzheimer’sDisease Research Ontology (CADRO)** intoa**cross-disease biomarker categorization framework** applicableto all neurodegenerative diseases (NDDs). It allows for **standardized classification, AI-based feature extraction, and multimodal integration**.20 +==== **Data Preprocessing** ==== 14 14 15 -=== **Core Biomarker Categories** === 22 +1. **Standardization**: Ensure all data sources are normalized to a common format. 23 +1. **Feature Selection**: Identify relevant features for diagnosis (e.g., biomarkers, imaging scores). 24 +1. **Data Cleaning**: Handle missing values and remove duplicates. 16 16 17 -The following ontology is used within **Neurodiagnoses AI** for biomarker categorization: 18 - 19 -|=**Category**|=**Description** 20 -|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 21 -|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 22 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL 23 -|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 24 -|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 25 -|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 26 -|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 27 -|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 28 - 29 29 ---- 30 30 31 -== ** Howto UseExternalDatabasesin Neurodiagnoses** ==28 +=== **2. AI-Based Analysis** === 32 32 33 - Toenhance diagnostic accuracy, Neurodiagnoses AI integrates data from**multiple biomedical and neurologicalresearch databases**. Researchers can follow these steps to access, prepare, and integratedata into the Neurodiagnoses framework.30 +==== **Model Development** ==== 34 34 35 -=== **Potential Data Sources** === 32 +* **Embedding Models**: Use pre-trained models like BioBERT or BioLORD for text data. 33 +* **Classification Models**: 34 +** Algorithms: Random Forest, Support Vector Machines (SVM), or neural networks. 35 +** Purpose: Predict the likelihood of specific neurological conditions based on input data. 36 36 37 - Neurodiagnoses maintains an **updatedlist**of biomedical datasetsrelevanttoneurodegenerative diseases:37 +==== **Dimensionality Reduction and Interpretability** ==== 38 38 39 -* **ADNI**: Alzheimer's Disease Imaging & Biomarkers → [[ADNI>>url:https://adni.loni.usc.edu/]] 40 -* **PPMI**: Parkinson’s Disease Imaging & Biospecimens → [[PPMI>>url:https://www.ppmi-info.org/]] 41 -* **GP2**: Whole-Genome Sequencing for PD → [[GP2>>url:https://gp2.org/]] 42 -* **Enroll-HD**: Huntington’s Disease Clinical & Genetic Data → [[Enroll-HD>>url:https://www.enroll-hd.org/]] 43 -* **GAAIN**: Multi-Source Alzheimer’s Data Aggregation → [[GAAIN>>url:https://gaain.org/]] 44 -* **UK Biobank**: Population-Wide Genetic, Imaging & Health Records → [[UK Biobank>>url:https://www.ukbiobank.ac.uk/]] 45 -* **DPUK**: Dementia & Aging Data → [[DPUK>>url:https://www.dementiasplatform.uk/]] 46 -* **PRION Registry**: Prion Diseases Clinical & Genetic Data → [[PRION Registry>>url:https://prionregistry.org/]] 47 -* **DECIPHER**: Rare Genetic Disorder Genomic Variants → [[DECIPHER>>url:https://decipher.sanger.ac.uk/]] 39 +* Leverage [[DEIBO>>https://drive.ebrains.eu/f/8d7157708cde4b258db0/]] (Data-driven Embedding Interpretation Based on Ontologies) to connect model dimensions to ontology concepts. 40 +* Evaluate interpretability using metrics like the Area Under the Interpretability Curve (AUIC). 48 48 49 49 ---- 50 50 51 -== ** 1.RegisterforAccess** ==44 +=== **3. Diagnostic Framework** === 52 52 53 -* Each external database requires **individual registration and access approval**. 54 -* Ensure compliance with **ethical approvals and data usage agreements** before integrating datasets into Neurodiagnoses. 55 -* Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data. 46 +==== **Axes of Diagnosis** ==== 56 56 57 - ----48 +The framework organizes diagnostic data into three axes: 58 58 59 -== **2. Download & Prepare Data** == 50 +1. **Etiology**: Genetic and environmental risk factors. 51 +1. **Molecular Markers**: Biomarkers such as amyloid-beta, tau, and alpha-synuclein. 52 +1. **Neuroanatomical Correlations**: Results from neuroimaging (e.g., MRI, PET). 60 60 61 -* Download datasets while adhering to **database usage policies**. 62 -* Ensure files meet **Neurodiagnoses format requirements**: 54 +==== **Recommendation System** ==== 63 63 64 -|=**Data Type**|=**Accepted Formats** 65 -|**Tabular Data**|.csv, .tsv 66 -|**Neuroimaging**|.nii, .dcm 67 -|**Genomic Data**|.fasta, .vcf 68 -|**Clinical Metadata**|.json, .xml 56 +* Suggests additional tests or biomarkers if gaps are detected in the data. 57 +* Prioritizes tests based on clinical impact and cost-effectiveness. 69 69 70 -* **Mandatory Fields for Integration**: 71 -** **Subject ID**: Unique patient identifier 72 -** **Diagnosis**: Standardized disease classification 73 -** **Biomarkers**: CSF, plasma, or imaging biomarkers 74 -** **Genetic Data**: Whole-genome or exome sequencing 75 -** **Neuroimaging Metadata**: MRI/PET acquisition parameters 76 - 77 77 ---- 78 78 79 -== ** 3.Upload DataNeurodiagnoses** ==61 +=== **4. Computational Workflow** === 80 80 81 -=== **Option 1: Upload to EBRAINS Bucket** === 63 +1. **Data Loading**: Import data from storage (Drive or Bucket). 64 +1. **Feature Engineering**: Generate derived features from the raw data. 65 +1. **Model Training**: 66 +1*. Split data into training, validation, and test sets. 67 +1*. Train models with cross-validation to ensure robustness. 68 +1. **Evaluation**: 69 +1*. Metrics: Accuracy, F1-Score, AUIC for interpretability. 70 +1*. Compare against baseline models and domain benchmarks. 82 82 83 -* Location: **EBRAINS Neurodiagnoses Bucket** 84 -* Ensure **correct metadata tagging** before submission. 85 - 86 -=== **Option 2: Contribute via GitHub Repository** === 87 - 88 -* Location: **GitHub Data Repository** 89 -* Create a **new folder under /data/** and include a **dataset description**. 90 -* **For large datasets**, contact project administrators before uploading. 91 - 92 92 ---- 93 93 94 -== ** 4.Integrate DataintoAI Models** ==74 +=== **5. Validation** === 95 95 96 -* Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**. 97 -* **Standardize neuroimaging and biomarker formats** using harmonization tools. 98 -* Use **machine learning models** to handle **missing data** and **feature extraction**. 99 -* Train AI models with **newly integrated patient cohorts**. 76 +==== **Internal Validation** ==== 100 100 101 -**Reference**: See docs/data_processing.md for detailed instructions. 78 +* Test the system using simulated datasets and known clinical cases. 79 +* Fine-tune models based on validation results. 102 102 103 - ----81 +==== **External Validation** ==== 104 104 105 -== **AI-Driven Biomarker Categorization** == 83 +* Collaborate with research institutions and hospitals to test the system in real-world settings. 84 +* Use anonymized patient data to ensure privacy compliance. 106 106 107 -Neurodiagnoses employs **AI models** for biomarker classification: 108 - 109 -|=**Model Type**|=**Application** 110 -|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 111 -|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 112 -|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 113 - 114 114 ---- 115 115 116 -== **Collaborati on& Partnerships** ==88 +=== **6. Collaborative Development** === 117 117 118 - ===**PartneringwithDataProviders**===90 +The project is open to contributions from researchers, clinicians, and developers. Key tools include: 119 119 120 -Neurodiagnoses seeks partnerships with data repositories to: 92 +* **Jupyter Notebooks**: For data analysis and pipeline development. 93 +** Example: [[probabilistic imputation>>https://drive.ebrains.eu/f/4f69ab52f7734ef48217/]] 94 +* **Wiki Pages**: For documenting methods and results. 95 +* **Drive and Bucket**: For sharing code, data, and outputs. 96 +* **Related projects: **For instance: [[//Beyond the hype: AI in dementia – from early risk detection to disease treatment//>>https://www.lethe-project.eu/beyond-the-hype-ai-in-dementia-from-early-risk-detection-to-disease-treatment/]] 121 121 122 -* Enable **API-based data integration** for real-time processing. 123 -* Co-develop **harmonized AI-ready datasets** with standardized annotations. 124 -* Secure **funding opportunities** through joint grant applications. 125 - 126 -**Interested in Partnering?** 127 - 128 -* If you represent a **research consortium or database provider**, reach out to explore **data-sharing agreements**. 129 -* **Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 130 - 131 131 ---- 132 132 133 -== ** FinalNotes** ==100 +=== **7. Tools and Technologies** === 134 134 135 -Neurodiagnoses continuously expands its **data ecosystem** to support **AI-driven clinical decision-making**. Researchers and institutions are encouraged to **contribute new datasets and methodologies**. 136 - 137 -**For additional technical documentation**: 138 - 139 -* **GitHub Repository**: [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]] 140 -* **EBRAINS Collaboration Page**: [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]] 141 - 142 -**If you experience issues integrating data**, open a **GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**. 143 - 144 ----- 145 - 146 -This **updated methodology** now incorporates [[https:~~/~~/github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/biomarker_ontology>>https://Neuromarker]] for standardized biomarker classification, enabling **cross-disease AI training** across neurodegenerative disorders. 102 +* **Programming Languages**: Python for AI and data processing. 103 +* **Frameworks**: 104 +** TensorFlow and PyTorch for machine learning. 105 +** Flask or FastAPI for backend services. 106 +* **Visualization**: Plotly and Matplotlib for interactive and static visualizations. 107 +* **EBRAINS Services**: 108 +** Collaboratory Lab for running Notebooks. 109 +** Buckets for storing large datasets.