Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 20.1
edited by manuelmenendez
on 2025/02/14 14:47
on 2025/02/14 14:47
Change comment:
There is no comment for this version
To version 6.1
edited by manuelmenendez
on 2025/02/01 11:57
on 2025/02/01 11:57
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,146 +1,173 @@ 1 - Hereis the updated**Methodology** section for the EBRAINS Wiki, incorporating the **Generalized Neuro BiomarkerOntology Categorization (Neuromarker)** for **biomarker classification across all neurodegenerative diseases**.1 +==== **Overview** ==== 2 2 3 +This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**. 4 + 3 3 ---- 4 4 5 -== ** NeurodiagnosesAI: MultimodalAIfor Neurodiagnostic Predictions** ==7 +=== **1. Data Integration** === 6 6 7 -=== ** ProjectOverview** ===9 +==== **Data Sources** ==== 8 8 9 - Neurodiagnoses AI implements**AI-driven diagnostic and prognosticmodels** for central nervous system (CNS)disorders, expanding the **Florey Dementia Index (FDI) methodology** to a broader set of neurologicalconditions. The approach integrates **multimodal data sources** (EEG, neuroimaging, biomarkers,andgenetics)and employs machine learning modelsto provide **explainable, real-time diagnostic insights**. This framework now incorporatesNeuromarker**, a **generalized biomarker ontology** that categorizes biomarkers across neurodegenerative diseases, enabling **standardized, cross-disease AI training**.11 +**Biomedical Ontologies & Databases:** 10 10 11 -== **Neuromarker: Generalized Biomarker Ontology** == 13 +* **Human Phenotype Ontology (HPO)** for symptom annotation. 14 +* **Gene Ontology (GO)** for molecular and cellular processes. 12 12 13 - Neuromarker extends the**Common Alzheimer’s Disease Research Ontology (CADRO)** into a **cross-disease biomarker categorizationframework** applicabletoall neurodegenerative diseases (NDDs). It allows for **standardizedclassification,AI-basedfeatureextraction, and multimodal integration**.16 +**Dimensionality Reduction and Interpretability:** 14 14 15 -=== **Core Biomarker Categories** === 18 +* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 19 +* **Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 16 16 17 - The following ontology is used within**NeurodiagnosesAI**forbiomarker categorization:21 +**Neuroimaging & EEG/MEG Data:** 18 18 19 -|=**Category**|=**Description** 20 -|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 21 -|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 22 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL 23 -|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 24 -|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 25 -|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 26 -|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 27 -|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 23 +* **MRI volumetric measures** for brain atrophy tracking. 24 +* **EEG functional connectivity patterns** (AI-Mind). 28 28 29 - ----26 +**Clinical & Biomarker Data:** 30 30 31 -== **How to Use External Databases in Neurodiagnoses** == 28 +* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 29 +* **Sleep monitoring and actigraphy data** (ADIS). 32 32 33 - To enhance diagnostic accuracy, Neurodiagnoses AI integrates data from**multiplebiomedical and neurological research databases**.Researchers canfollow these steps to access, prepare, andintegrate dataintothe Neurodiagnoses framework.31 +**Federated Learning Integration:** 34 34 35 - ===**PotentialDataSources**===33 +* **Secure multi-center data harmonization** (PROMINENT). 36 36 37 - Neurodiagnoses maintains an **updated list** of biomedical datasets relevant to neurodegenerative diseases:35 +---- 38 38 39 -* **ADNI**: Alzheimer's Disease Imaging & Biomarkers → [[ADNI>>url:https://adni.loni.usc.edu/]] 40 -* **PPMI**: Parkinson’s Disease Imaging & Biospecimens → [[PPMI>>url:https://www.ppmi-info.org/]] 41 -* **GP2**: Whole-Genome Sequencing for PD → [[GP2>>url:https://gp2.org/]] 42 -* **Enroll-HD**: Huntington’s Disease Clinical & Genetic Data → [[Enroll-HD>>url:https://www.enroll-hd.org/]] 43 -* **GAAIN**: Multi-Source Alzheimer’s Data Aggregation → [[GAAIN>>url:https://gaain.org/]] 44 -* **UK Biobank**: Population-Wide Genetic, Imaging & Health Records → [[UK Biobank>>url:https://www.ukbiobank.ac.uk/]] 45 -* **DPUK**: Dementia & Aging Data → [[DPUK>>url:https://www.dementiasplatform.uk/]] 46 -* **PRION Registry**: Prion Diseases Clinical & Genetic Data → [[PRION Registry>>url:https://prionregistry.org/]] 47 -* **DECIPHER**: Rare Genetic Disorder Genomic Variants → [[DECIPHER>>url:https://decipher.sanger.ac.uk/]] 37 +==== **Annotation System for Multi-Modal Data** ==== 48 48 39 +To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will: 40 + 41 +* **Assign standardized metadata tags** to diagnostic features. 42 +* **Provide contextual explanations** for AI-based classifications. 43 +* **Track temporal disease progression annotations** to identify long-term trends. 44 + 49 49 ---- 50 50 51 -== ** 1.RegisterforAccess** ==47 +=== **2. AI-Based Analysis** === 52 52 53 -* Each external database requires **individual registration and access approval**. 54 -* Ensure compliance with **ethical approvals and data usage agreements** before integrating datasets into Neurodiagnoses. 55 -* Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data. 49 +==== **Machine Learning & Deep Learning Models** ==== 56 56 57 - ----51 +**Risk Prediction Models:** 58 58 59 - ==**2.Download&PrepareData**==53 +* **LETHE’s cognitive risk prediction model** integrated into the annotation framework. 60 60 61 -* Download datasets while adhering to **database usage policies**. 62 -* Ensure files meet **Neurodiagnoses format requirements**: 55 +**Biomarker Classification & Probabilistic Imputation:** 63 63 64 -|=**Data Type**|=**Accepted Formats** 65 -|**Tabular Data**|.csv, .tsv 66 -|**Neuroimaging**|.nii, .dcm 67 -|**Genomic Data**|.fasta, .vcf 68 -|**Clinical Metadata**|.json, .xml 57 +* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. 69 69 70 -* **Mandatory Fields for Integration**: 71 -** **Subject ID**: Unique patient identifier 72 -** **Diagnosis**: Standardized disease classification 73 -** **Biomarkers**: CSF, plasma, or imaging biomarkers 74 -** **Genetic Data**: Whole-genome or exome sequencing 75 -** **Neuroimaging Metadata**: MRI/PET acquisition parameters 59 +**Neuroimaging Feature Extraction:** 76 76 61 +* **MRI & EEG data** annotated with **neuroanatomical feature labels**. 62 + 63 +==== **AI-Powered Annotation System** ==== 64 + 65 +* Uses **SHAP-based interpretability tools** to explain model decisions. 66 +* Generates **automated clinical annotations** in structured reports. 67 +* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). 68 + 77 77 ---- 78 78 79 -== **3. UploadDatato Neurodiagnoses** ==71 +=== **3. Diagnostic Framework & Clinical Decision Support** === 80 80 81 -=== ** Option1: UploadtoEBRAINS Bucket** ===73 +==== **Tridimensional Diagnostic Axes** ==== 82 82 83 -* Location: **EBRAINS Neurodiagnoses Bucket** 84 -* Ensure **correct metadata tagging** before submission. 75 +**Axis 1: Etiology (Pathogenic Mechanisms)** 85 85 86 -=== **Option 2: Contribute via GitHub Repository** === 77 +* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 78 +* **AI-assisted annotation** provides **causal interpretations** for clinical use. 87 87 88 -* Location: **GitHub Data Repository** 89 -* Create a **new folder under /data/** and include a **dataset description**. 90 -* **For large datasets**, contact project administrators before uploading. 80 +**Axis 2: Molecular Markers & Biomarkers** 91 91 82 +* **Integration of CSF, blood, and neuroimaging biomarkers**. 83 +* **Structured annotation** highlights **biological pathways linked to diagnosis**. 84 + 85 +**Axis 3: Neuroanatomoclinical Correlations** 86 + 87 +* **MRI and EEG data** provide anatomical and functional insights. 88 +* **AI-generated progression maps** annotate **brain structure-function relationships**. 89 + 92 92 ---- 93 93 94 -== **4. Integrate DataintoAIModels** ==92 +=== **4. Computational Workflow & Annotation Pipelines** === 95 95 96 -* Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**. 97 -* **Standardize neuroimaging and biomarker formats** using harmonization tools. 98 -* Use **machine learning models** to handle **missing data** and **feature extraction**. 99 -* Train AI models with **newly integrated patient cohorts**. 94 +==== **Data Processing Steps** ==== 100 100 101 -** Reference**: See docs/data_processing.md for detailed instructions.96 +**Data Ingestion:** 102 102 103 ----- 98 +* **Harmonized datasets** stored in **EBRAINS Bucket**. 99 +* **Preprocessing pipelines** clean and standardize data. 104 104 105 - ==**AI-Driven BiomarkerCategorization**==101 +**Feature Engineering:** 106 106 107 - Neurodiagnoses employs**AImodels** for biomarkerclassification:103 +* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. 108 108 109 -|=**Model Type**|=**Application** 110 -|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 111 -|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 112 -|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 105 +**AI-Generated Annotations:** 113 113 107 +* **Automated tagging** of diagnostic features in **structured reports**. 108 +* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 109 + 110 +**Clinical Decision Support Integration:** 111 + 112 +* **AI-annotated findings** fed into **interactive dashboards**. 113 +* **Clinicians can adjust, validate, and modify annotations**. 114 + 114 114 ---- 115 115 116 -== ** Collaboration &Partnerships** ==117 +=== **5. Validation & Real-World Testing** === 117 117 118 -=== **P artnering with DataProviders** ===119 +==== **Prospective Clinical Study** ==== 119 119 120 -Neurodiagnoses seeks partnerships with data repositories to: 121 +* **Multi-center validation** of AI-based **annotations & risk stratifications**. 122 +* **Benchmarking against clinician-based diagnoses**. 123 +* **Real-world testing** of AI-powered **structured reporting**. 121 121 122 -* Enable **API-based data integration** for real-time processing. 123 -* Co-develop **harmonized AI-ready datasets** with standardized annotations. 124 -* Secure **funding opportunities** through joint grant applications. 125 +==== **Quality Assurance & Explainability** ==== 125 125 126 -**Interested in Partnering?** 127 +* **Annotations linked to structured knowledge graphs** for improved transparency. 128 +* **Interactive annotation editor** allows clinicians to validate AI outputs. 127 127 128 -* If you represent a **research consortium or database provider**, reach out to explore **data-sharing agreements**. 129 -* **Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 130 +---- 130 130 132 +=== **6. Collaborative Development** === 133 + 134 +The project is **open to contributions** from **researchers, clinicians, and developers**. 135 + 136 +**Key tools include:** 137 + 138 +* **Jupyter Notebooks**: For data analysis and pipeline development. 139 +** Example: **probabilistic imputation** 140 +* **Wiki Pages**: For documenting methods and results. 141 +* **Drive and Bucket**: For sharing code, data, and outputs. 142 +* **Collaboration with related projects**: 143 +** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 144 + 131 131 ---- 132 132 133 -== ** FinalNotes** ==147 +=== **7. Tools and Technologies** === 134 134 135 - Neurodiagnosescontinuously expands its**data ecosystem** to support **AI-driven clinical decision-making**.Researchers and institutions are encouraged to **contribute new datasets and methodologies**.149 +==== **Programming Languages:** ==== 136 136 137 -** For additionaltechnicaldocumentation**:151 +* **Python** for AI and data processing. 138 138 139 -* **GitHub Repository**: [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]] 140 -* **EBRAINS Collaboration Page**: [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]] 153 +==== **Frameworks:** ==== 141 141 142 -**If you experience issues integrating data**, open a **GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**. 155 +* **TensorFlow** and **PyTorch** for machine learning. 156 +* **Flask** or **FastAPI** for backend services. 143 143 158 +==== **Visualization:** ==== 159 + 160 +* **Plotly** and **Matplotlib** for interactive and static visualizations. 161 + 162 +==== **EBRAINS Services:** ==== 163 + 164 +* **Collaboratory Lab** for running Notebooks. 165 +* **Buckets** for storing large datasets. 166 + 144 144 ---- 145 145 146 -This **updated methodology** now incorporates [[https:~~/~~/github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/biomarker_ontology>>https://Neuromarker]] for standardized biomarker classification, enabling **cross-disease AI training** across neurodegenerative disorders. 169 +=== **Why This Matters** === 170 + 171 +* **The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.** 172 +* **It enables real-time tracking of disease progression across the three diagnostic axes.** 173 +* **It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.**