Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 20.1
edited by manuelmenendez
on 2025/02/14 14:47
Change comment: There is no comment for this version
To version 6.1
edited by manuelmenendez
on 2025/02/01 11:57
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,146 +1,173 @@
1 -Here is the updated **Methodology** section for the EBRAINS Wiki, incorporating the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)** for **biomarker classification across all neurodegenerative diseases**.
1 +==== **Overview** ====
2 2  
3 +This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**.
4 +
3 3  ----
4 4  
5 -== **Neurodiagnoses AI: Multimodal AI for Neurodiagnostic Predictions** ==
7 +=== **1. Data Integration** ===
6 6  
7 -=== **Project Overview** ===
9 +==== **Data Sources** ====
8 8  
9 -Neurodiagnoses AI implements **AI-driven diagnostic and prognostic models** for central nervous system (CNS) disorders, expanding the **Florey Dementia Index (FDI) methodology** to a broader set of neurological conditions. The approach integrates **multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics) and employs machine learning models to provide **explainable, real-time diagnostic insights**. This framework now incorporates **Neuromarker**, a **generalized biomarker ontology** that categorizes biomarkers across neurodegenerative diseases, enabling **standardized, cross-disease AI training**.
11 +**Biomedical Ontologies & Databases:**
10 10  
11 -== **Neuromarker: Generalized Biomarker Ontology** ==
13 +* **Human Phenotype Ontology (HPO)** for symptom annotation.
14 +* **Gene Ontology (GO)** for molecular and cellular processes.
12 12  
13 -Neuromarker extends the **Common Alzheimer’s Disease Research Ontology (CADRO)** into a **cross-disease biomarker categorization framework** applicable to all neurodegenerative diseases (NDDs). It allows for **standardized classification, AI-based feature extraction, and multimodal integration**.
16 +**Dimensionality Reduction and Interpretability:**
14 14  
15 -=== **Core Biomarker Categories** ===
18 +* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**.
19 +* **Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts.
16 16  
17 -The following ontology is used within **Neurodiagnoses AI** for biomarker categorization:
21 +**Neuroimaging & EEG/MEG Data:**
18 18  
19 -|=**Category**|=**Description**
20 -|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic)
21 -|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein)
22 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL
23 -|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers
24 -|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers
25 -|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS)
26 -|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores
27 -|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities
23 +* **MRI volumetric measures** for brain atrophy tracking.
24 +* **EEG functional connectivity patterns** (AI-Mind).
28 28  
29 -----
26 +**Clinical & Biomarker Data:**
30 30  
31 -== **How to Use External Databases in Neurodiagnoses** ==
28 +* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light).
29 +* **Sleep monitoring and actigraphy data** (ADIS).
32 32  
33 -To enhance diagnostic accuracy, Neurodiagnoses AI integrates data from **multiple biomedical and neurological research databases**. Researchers can follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework.
31 +**Federated Learning Integration:**
34 34  
35 -=== **Potential Data Sources** ===
33 +* **Secure multi-center data harmonization** (PROMINENT).
36 36  
37 -Neurodiagnoses maintains an **updated list** of biomedical datasets relevant to neurodegenerative diseases:
35 +----
38 38  
39 -* **ADNI**: Alzheimer's Disease Imaging & Biomarkers → [[ADNI>>url:https://adni.loni.usc.edu/]]
40 -* **PPMI**: Parkinson’s Disease Imaging & Biospecimens → [[PPMI>>url:https://www.ppmi-info.org/]]
41 -* **GP2**: Whole-Genome Sequencing for PD → [[GP2>>url:https://gp2.org/]]
42 -* **Enroll-HD**: Huntington’s Disease Clinical & Genetic Data → [[Enroll-HD>>url:https://www.enroll-hd.org/]]
43 -* **GAAIN**: Multi-Source Alzheimer’s Data Aggregation → [[GAAIN>>url:https://gaain.org/]]
44 -* **UK Biobank**: Population-Wide Genetic, Imaging & Health Records → [[UK Biobank>>url:https://www.ukbiobank.ac.uk/]]
45 -* **DPUK**: Dementia & Aging Data → [[DPUK>>url:https://www.dementiasplatform.uk/]]
46 -* **PRION Registry**: Prion Diseases Clinical & Genetic Data → [[PRION Registry>>url:https://prionregistry.org/]]
47 -* **DECIPHER**: Rare Genetic Disorder Genomic Variants → [[DECIPHER>>url:https://decipher.sanger.ac.uk/]]
37 +==== **Annotation System for Multi-Modal Data** ====
48 48  
39 +To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will:
40 +
41 +* **Assign standardized metadata tags** to diagnostic features.
42 +* **Provide contextual explanations** for AI-based classifications.
43 +* **Track temporal disease progression annotations** to identify long-term trends.
44 +
49 49  ----
50 50  
51 -== **1. Register for Access** ==
47 +=== **2. AI-Based Analysis** ===
52 52  
53 -* Each external database requires **individual registration and access approval**.
54 -* Ensure compliance with **ethical approvals and data usage agreements** before integrating datasets into Neurodiagnoses.
55 -* Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data.
49 +==== **Machine Learning & Deep Learning Models** ====
56 56  
57 -----
51 +**Risk Prediction Models:**
58 58  
59 -== **2. Download & Prepare Data** ==
53 +* **LETHE’s cognitive risk prediction model** integrated into the annotation framework.
60 60  
61 -* Download datasets while adhering to **database usage policies**.
62 -* Ensure files meet **Neurodiagnoses format requirements**:
55 +**Biomarker Classification & Probabilistic Imputation:**
63 63  
64 -|=**Data Type**|=**Accepted Formats**
65 -|**Tabular Data**|.csv, .tsv
66 -|**Neuroimaging**|.nii, .dcm
67 -|**Genomic Data**|.fasta, .vcf
68 -|**Clinical Metadata**|.json, .xml
57 +* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**.
69 69  
70 -* **Mandatory Fields for Integration**:
71 -** **Subject ID**: Unique patient identifier
72 -** **Diagnosis**: Standardized disease classification
73 -** **Biomarkers**: CSF, plasma, or imaging biomarkers
74 -** **Genetic Data**: Whole-genome or exome sequencing
75 -** **Neuroimaging Metadata**: MRI/PET acquisition parameters
59 +**Neuroimaging Feature Extraction:**
76 76  
61 +* **MRI & EEG data** annotated with **neuroanatomical feature labels**.
62 +
63 +==== **AI-Powered Annotation System** ====
64 +
65 +* Uses **SHAP-based interpretability tools** to explain model decisions.
66 +* Generates **automated clinical annotations** in structured reports.
67 +* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**).
68 +
77 77  ----
78 78  
79 -== **3. Upload Data to Neurodiagnoses** ==
71 +=== **3. Diagnostic Framework & Clinical Decision Support** ===
80 80  
81 -=== **Option 1: Upload to EBRAINS Bucket** ===
73 +==== **Tridimensional Diagnostic Axes** ====
82 82  
83 -* Location: **EBRAINS Neurodiagnoses Bucket**
84 -* Ensure **correct metadata tagging** before submission.
75 +**Axis 1: Etiology (Pathogenic Mechanisms)**
85 85  
86 -=== **Option 2: Contribute via GitHub Repository** ===
77 +* Classification based on **genetic markers, cellular pathways, and environmental risk factors**.
78 +* **AI-assisted annotation** provides **causal interpretations** for clinical use.
87 87  
88 -* Location: **GitHub Data Repository**
89 -* Create a **new folder under /data/** and include a **dataset description**.
90 -* **For large datasets**, contact project administrators before uploading.
80 +**Axis 2: Molecular Markers & Biomarkers**
91 91  
82 +* **Integration of CSF, blood, and neuroimaging biomarkers**.
83 +* **Structured annotation** highlights **biological pathways linked to diagnosis**.
84 +
85 +**Axis 3: Neuroanatomoclinical Correlations**
86 +
87 +* **MRI and EEG data** provide anatomical and functional insights.
88 +* **AI-generated progression maps** annotate **brain structure-function relationships**.
89 +
92 92  ----
93 93  
94 -== **4. Integrate Data into AI Models** ==
92 +=== **4. Computational Workflow & Annotation Pipelines** ===
95 95  
96 -* Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**.
97 -* **Standardize neuroimaging and biomarker formats** using harmonization tools.
98 -* Use **machine learning models** to handle **missing data** and **feature extraction**.
99 -* Train AI models with **newly integrated patient cohorts**.
94 +==== **Data Processing Steps** ====
100 100  
101 -**Reference**: See docs/data_processing.md for detailed instructions.
96 +**Data Ingestion:**
102 102  
103 -----
98 +* **Harmonized datasets** stored in **EBRAINS Bucket**.
99 +* **Preprocessing pipelines** clean and standardize data.
104 104  
105 -== **AI-Driven Biomarker Categorization** ==
101 +**Feature Engineering:**
106 106  
107 -Neurodiagnoses employs **AI models** for biomarker classification:
103 +* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**.
108 108  
109 -|=**Model Type**|=**Application**
110 -|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases
111 -|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers
112 -|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data
105 +**AI-Generated Annotations:**
113 113  
107 +* **Automated tagging** of diagnostic features in **structured reports**.
108 +* **Explainability modules (SHAP, LIME)** ensure transparency in predictions.
109 +
110 +**Clinical Decision Support Integration:**
111 +
112 +* **AI-annotated findings** fed into **interactive dashboards**.
113 +* **Clinicians can adjust, validate, and modify annotations**.
114 +
114 114  ----
115 115  
116 -== **Collaboration & Partnerships** ==
117 +=== **5. Validation & Real-World Testing** ===
117 117  
118 -=== **Partnering with Data Providers** ===
119 +==== **Prospective Clinical Study** ====
119 119  
120 -Neurodiagnoses seeks partnerships with data repositories to:
121 +* **Multi-center validation** of AI-based **annotations & risk stratifications**.
122 +* **Benchmarking against clinician-based diagnoses**.
123 +* **Real-world testing** of AI-powered **structured reporting**.
121 121  
122 -* Enable **API-based data integration** for real-time processing.
123 -* Co-develop **harmonized AI-ready datasets** with standardized annotations.
124 -* Secure **funding opportunities** through joint grant applications.
125 +==== **Quality Assurance & Explainability** ====
125 125  
126 -**Interested in Partnering?**
127 +* **Annotations linked to structured knowledge graphs** for improved transparency.
128 +* **Interactive annotation editor** allows clinicians to validate AI outputs.
127 127  
128 -* If you represent a **research consortium or database provider**, reach out to explore **data-sharing agreements**.
129 -* **Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]
130 +----
130 130  
132 +=== **6. Collaborative Development** ===
133 +
134 +The project is **open to contributions** from **researchers, clinicians, and developers**.
135 +
136 +**Key tools include:**
137 +
138 +* **Jupyter Notebooks**: For data analysis and pipeline development.
139 +** Example: **probabilistic imputation**
140 +* **Wiki Pages**: For documenting methods and results.
141 +* **Drive and Bucket**: For sharing code, data, and outputs.
142 +* **Collaboration with related projects**:
143 +** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment**
144 +
131 131  ----
132 132  
133 -== **Final Notes** ==
147 +=== **7. Tools and Technologies** ===
134 134  
135 -Neurodiagnoses continuously expands its **data ecosystem** to support **AI-driven clinical decision-making**. Researchers and institutions are encouraged to **contribute new datasets and methodologies**.
149 +==== **Programming Languages:** ====
136 136  
137 -**For additional technical documentation**:
151 +* **Python** for AI and data processing.
138 138  
139 -* **GitHub Repository**: [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]]
140 -* **EBRAINS Collaboration Page**: [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]]
153 +==== **Frameworks:** ====
141 141  
142 -**If you experience issues integrating data**, open a **GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**.
155 +* **TensorFlow** and **PyTorch** for machine learning.
156 +* **Flask** or **FastAPI** for backend services.
143 143  
158 +==== **Visualization:** ====
159 +
160 +* **Plotly** and **Matplotlib** for interactive and static visualizations.
161 +
162 +==== **EBRAINS Services:** ====
163 +
164 +* **Collaboratory Lab** for running Notebooks.
165 +* **Buckets** for storing large datasets.
166 +
144 144  ----
145 145  
146 -This **updated methodology** now incorporates [[https:~~/~~/github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/biomarker_ontology>>https://Neuromarker]] for standardized biomarker classification, enabling **cross-disease AI training** across neurodegenerative disorders.
169 +=== **Why This Matters** ===
170 +
171 +* **The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.**
172 +* **It enables real-time tracking of disease progression across the three diagnostic axes.**
173 +* **It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.**