Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 21.1
edited by manuelmenendez
on 2025/02/14 22:09
on 2025/02/14 22:09
Change comment:
There is no comment for this version
To version 12.2
edited by manuelmenendez
on 2025/02/09 09:54
on 2025/02/09 09:54
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,148 +1,273 @@ 1 - Hereis the updated**Methodology** section for the EBRAINS Wiki, incorporating the **Generalized Neuro BiomarkerOntology Categorization (Neuromarker)** for **biomarker classification across all neurodegenerative diseases**.1 +==== **Overview** ==== 2 2 3 +This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**. 4 + 5 +=== **Workflow** === 6 + 7 +1. ((( 8 +**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]** 9 + 10 +* Create a **GitHub repository** for AI scripts and models. 11 +* Use **GitHub Projects** to manage research milestones. 12 +))) 13 +1. ((( 14 +**We Use EBRAINS for Data & Collaboration** 15 + 16 +* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**. 17 +* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models. 18 +* Use **EBRAINS Wiki** for structured documentation and research discussion. 19 +))) 20 + 3 3 ---- 4 4 5 -== ** NeurodiagnosesAI: MultimodalAIfor Neurodiagnostic Predictions** ==23 +=== **1. Data Integration** === 6 6 7 -== =**ProjectOverview**===25 +== Overview == 8 8 9 -Neurodiagnoses AI implements **AI-driven diagnostic and prognostic models** for central nervous system (CNS) disorders, expanding the **Florey Dementia Index (FDI) methodology** to a broader set of neurological conditions. The approach integrates **multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics) and employs machine learning models to provide **explainable, real-time diagnostic insights**. This framework now incorporates **Neuromarker**, a **generalized biomarker ontology** that categorizes biomarkers across neurodegenerative diseases, enabling **standardized, cross-disease AI training**. 10 10 11 - ==**Neuromarker:GeneralizedBiomarkerOntology**==28 +Neurodiagnoses integrates clinical data via the **EBRAINS Medical Informatics Platform (MIP)**. MIP federates decentralized clinical data, allowing Neurodiagnoses to securely access and process sensitive information for AI-based diagnostics. 12 12 13 - Neuromarkerextends the **Common Alzheimer’s Disease Research Ontology (CADRO)** into a **cross-disease biomarker categorization framework**applicable to all neurodegenerative diseases (NDDs).Itallows for**standardizedclassification, AI-based feature extraction, and multimodal integration**.30 +== How It Works == 14 14 15 -=== **Core Biomarker Categories** === 16 16 17 -The following ontology is used within **Neurodiagnoses AI** for biomarker categorization: 33 +1. ((( 34 +**Authentication & API Access:** 18 18 19 -|=**Category**|=**Description** 20 -|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 21 -|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 22 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL 23 -|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 24 -|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 25 -|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 26 -|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 27 -|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 36 +* Users must have an **EBRAINS account**. 37 +* Neurodiagnoses uses **secure API endpoints** to fetch clinical data (e.g., from the **Federation for Dementia**). 38 +))) 39 +1. ((( 40 +**Data Mapping & Harmonization:** 28 28 42 +* Retrieved data is **normalized** and converted to standard formats (.csv, .json). 43 +* Data from **multiple sources** is harmonized to ensure consistency for AI processing. 44 +))) 45 +1. ((( 46 +**Security & Compliance:** 47 + 48 +* All data access is **logged and monitored**. 49 +* Data remains on **MIP servers** using **federated learning techniques** when possible. 50 +* Access is granted only after signing a **Data Usage Agreement (DUA)**. 51 +))) 52 + 53 +== Implementation Steps == 54 + 55 + 56 +1. Clone the repository. 57 +1. Configure your **EBRAINS API credentials** in mip_integration.py. 58 +1. Run the script to **download and harmonize clinical data**. 59 +1. Process the data for **AI model training**. 60 + 61 +For more detailed instructions, please refer to the **[[MIP Documentation>>url:https://mip.ebrains.eu/]]**. 62 + 29 29 ---- 30 30 31 -= =**HowtoUseExternalDatabasesinNeurodiagnoses**==65 += Data Processing & Integration with Clinica.Run = 32 32 33 -To enhance diagnostic accuracy, Neurodiagnoses AI integrates data from **multiple biomedical and neurological research databases**. Researchers can follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework. 34 34 35 -== =**Potential Data Sources**===68 +== Overview == 36 36 37 -Neurodiagnoses maintains an **updated list** of biomedical datasets relevant to neurodegenerative diseases: 38 38 39 -* **ADNI**: Alzheimer's Disease Imaging & Biomarkers → [[ADNI>>url:https://adni.loni.usc.edu/]] 40 -* **PPMI**: Parkinson’s Disease Imaging & Biospecimens → [[PPMI>>url:https://www.ppmi-info.org/]] 41 -* **GP2**: Whole-Genome Sequencing for PD → [[GP2>>url:https://gp2.org/]] 42 -* **Enroll-HD**: Huntington’s Disease Clinical & Genetic Data → [[Enroll-HD>>url:https://www.enroll-hd.org/]] 43 -* **GAAIN**: Multi-Source Alzheimer’s Data Aggregation → [[GAAIN>>url:https://gaain.org/]] 44 -* **UK Biobank**: Population-Wide Genetic, Imaging & Health Records → [[UK Biobank>>url:https://www.ukbiobank.ac.uk/]] 45 -* **DPUK**: Dementia & Aging Data → [[DPUK>>url:https://www.dementiasplatform.uk/]] 46 -* **PRION Registry**: Prion Diseases Clinical & Genetic Data → [[PRION Registry>>url:https://prionregistry.org/]] 47 -* **DECIPHER**: Rare Genetic Disorder Genomic Variants → [[DECIPHER>>url:https://decipher.sanger.ac.uk/]] 71 +Neurodiagnoses now supports **Clinica.Run**, an open-source neuroimaging platform designed for **multimodal data processing and reproducible neuroscience workflows**. 48 48 73 +== How It Works == 74 + 75 + 76 +1. ((( 77 +**Neuroimaging Preprocessing:** 78 + 79 +* MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines**. 80 +* Supports **longitudinal and cross-sectional analyses**. 81 +))) 82 +1. ((( 83 +**Automated Biomarker Extraction:** 84 + 85 +* Standardized extraction of **volumetric, metabolic, and functional biomarkers**. 86 +* Integration with machine learning models in Neurodiagnoses. 87 +))) 88 +1. ((( 89 +**Data Security & Compliance:** 90 + 91 +* Clinica.Run operates in **compliance with GDPR and HIPAA**. 92 +* Neuroimaging data remains **within the original storage environment**. 93 +))) 94 + 95 +== Implementation Steps == 96 + 97 + 98 +1. Install **Clinica.Run** dependencies. 99 +1. Configure your **Clinica.Run pipeline** in clinica_run_config.json. 100 +1. Run the pipeline for **preprocessing and biomarker extraction**. 101 +1. Use processed neuroimaging data for **AI-driven diagnostics** in Neurodiagnoses. 102 + 103 +For further information, refer to **[[Clinica.Run Documentation>>url:https://clinica.run/]]**. 104 + 105 +==== ==== 106 + 107 +==== **Data Sources** ==== 108 + 109 +[[List of potential sources of databases>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 110 + 111 +**Biomedical Ontologies & Databases:** 112 + 113 +* **Human Phenotype Ontology (HPO)** for symptom annotation. 114 +* **Gene Ontology (GO)** for molecular and cellular processes. 115 + 116 +**Dimensionality Reduction and Interpretability:** 117 + 118 +* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 119 +* **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 120 + 121 +**Neuroimaging & EEG/MEG Data:** 122 + 123 +* **MRI volumetric measures** for brain atrophy tracking. 124 +* **EEG functional connectivity patterns** (AI-Mind). 125 + 126 +**Clinical & Biomarker Data:** 127 + 128 +* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 129 +* **Sleep monitoring and actigraphy data** (ADIS). 130 + 131 +**Federated Learning Integration:** 132 + 133 +* **Secure multi-center data harmonization** (PROMINENT). 134 + 49 49 ---- 50 50 51 -== ** 1. RegisterforAccess** ==137 +==== **Annotation System for Multi-Modal Data** ==== 52 52 53 -* Each external database requires **individual registration and access approval**. 54 -* Ensure compliance with **ethical approvals and data usage agreements** before integrating datasets into Neurodiagnoses. 55 -* Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data. 139 +To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will: 56 56 141 +* **Assign standardized metadata tags** to diagnostic features. 142 +* **Provide contextual explanations** for AI-based classifications. 143 +* **Track temporal disease progression annotations** to identify long-term trends. 144 + 57 57 ---- 58 58 59 -== **2. Download& Prepare Data** ==147 +=== **2. AI-Based Analysis** === 60 60 61 -* Download datasets while adhering to **database usage policies**. 62 -* Ensure files meet **Neurodiagnoses format requirements**: 149 +==== **Machine Learning & Deep Learning Models** ==== 63 63 64 -|=**Data Type**|=**Accepted Formats** 65 -|**Tabular Data**|.csv, .tsv 66 -|**Neuroimaging**|.nii, .dcm 67 -|**Genomic Data**|.fasta, .vcf 68 -|**Clinical Metadata**|.json, .xml 151 +**Risk Prediction Models:** 69 69 70 -* **Mandatory Fields for Integration**: 71 -** **Subject ID**: Unique patient identifier 72 -** **Diagnosis**: Standardized disease classification 73 -** **Biomarkers**: CSF, plasma, or imaging biomarkers 74 -** **Genetic Data**: Whole-genome or exome sequencing 75 -** **Neuroimaging Metadata**: MRI/PET acquisition parameters 153 +* **LETHE’s cognitive risk prediction model** integrated into the annotation framework. 76 76 77 - ----155 +**Biomarker Classification & Probabilistic Imputation:** 78 78 79 - ==**3.UploadDatatoNeurodiagnoses**==157 +* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. 80 80 81 - ===**Option1: UploadtoEBRAINS Bucket**===159 +**Neuroimaging Feature Extraction:** 82 82 83 -* Location: **EBRAINS Neurodiagnoses Bucket** 84 -* Ensure **correct metadata tagging** before submission. 161 +* **MRI & EEG data** annotated with **neuroanatomical feature labels**. 85 85 86 -=== ** Option 2: ContributeviaGitHub Repository** ===163 +==== **AI-Powered Annotation System** ==== 87 87 88 -* Location:**GitHubDataRepository**89 -* Createa**new folderunder/data/**andincludea **datasetdescription**.90 -* **Forlargedatasets**, contact project administratorsbefore uploading.165 +* Uses **SHAP-based interpretability tools** to explain model decisions. 166 +* Generates **automated clinical annotations** in structured reports. 167 +* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). 91 91 92 92 ---- 93 93 94 -== ** 4.IntegrateDataintoAI Models** ==171 +=== **3. Diagnostic Framework & Clinical Decision Support** === 95 95 96 -* Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**. 97 -* **Standardize neuroimaging and biomarker formats** using harmonization tools. 98 -* Use **machine learning models** to handle **missing data** and **feature extraction**. 99 -* Train AI models with **newly integrated patient cohorts**. 173 +==== **Tridimensional Diagnostic Axes** ==== 100 100 101 -** Reference**:See docs/data_processing.mdfor detailed instructions.175 +**Axis 1: Etiology (Pathogenic Mechanisms)** 102 102 177 +* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 178 +* **AI-assisted annotation** provides **causal interpretations** for clinical use. 179 + 180 +**Axis 2: Molecular Markers & Biomarkers** 181 + 182 +* **Integration of CSF, blood, and neuroimaging biomarkers**. 183 +* **Structured annotation** highlights **biological pathways linked to diagnosis**. 184 + 185 +**Axis 3: Neuroanatomoclinical Correlations** 186 + 187 +* **MRI and EEG data** provide anatomical and functional insights. 188 +* **AI-generated progression maps** annotate **brain structure-function relationships**. 189 + 103 103 ---- 104 104 105 -== ** AI-DrivenBiomarkerCategorization** ==192 +=== **4. Computational Workflow & Annotation Pipelines** === 106 106 107 - Neurodiagnosesemploys**AImodels** forbiomarkerclassification:194 +==== **Data Processing Steps** ==== 108 108 109 -|=**Model Type**|=**Application** 110 -|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 111 -|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 112 -|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 196 +**Data Ingestion:** 113 113 198 +* **Harmonized datasets** stored in **EBRAINS Bucket**. 199 +* **Preprocessing pipelines** clean and standardize data. 200 + 201 +**Feature Engineering:** 202 + 203 +* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. 204 + 205 +**AI-Generated Annotations:** 206 + 207 +* **Automated tagging** of diagnostic features in **structured reports**. 208 +* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 209 + 210 +**Clinical Decision Support Integration:** 211 + 212 +* **AI-annotated findings** fed into **interactive dashboards**. 213 +* **Clinicians can adjust, validate, and modify annotations**. 214 + 114 114 ---- 115 115 116 -== [[image:workflowneurodiagnoses.png]]==217 +=== **5. Validation & Real-World Testing** === 117 117 118 -== ** Collaboration& Partnerships** ==219 +==== **Prospective Clinical Study** ==== 119 119 120 -=== **Partnering with Data Providers** === 221 +* **Multi-center validation** of AI-based **annotations & risk stratifications**. 222 +* **Benchmarking against clinician-based diagnoses**. 223 +* **Real-world testing** of AI-powered **structured reporting**. 121 121 122 - Neurodiagnosesseekspartnershipswithdatarepositoriesto:225 +==== **Quality Assurance & Explainability** ==== 123 123 124 -* Enable **API-based data integration** for real-time processing. 125 -* Co-develop **harmonized AI-ready datasets** with standardized annotations. 126 -* Secure **funding opportunities** through joint grant applications. 227 +* **Annotations linked to structured knowledge graphs** for improved transparency. 228 +* **Interactive annotation editor** allows clinicians to validate AI outputs. 127 127 128 - **Interested in Partnering?**230 +---- 129 129 130 -* If you represent a **research consortium or database provider**, reach out to explore **data-sharing agreements**. 131 -* **Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 232 +=== **6. Collaborative Development** === 132 132 234 +The project is **open to contributions** from **researchers, clinicians, and developers**. 235 + 236 +**Key tools include:** 237 + 238 +* **Jupyter Notebooks**: For data analysis and pipeline development. 239 +** Example: **probabilistic imputation** 240 +* **Wiki Pages**: For documenting methods and results. 241 +* **Drive and Bucket**: For sharing code, data, and outputs. 242 +* **Collaboration with related projects**: 243 +** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 244 + 133 133 ---- 134 134 135 -== ** FinalNotes** ==247 +=== **7. Tools and Technologies** === 136 136 137 - Neurodiagnosescontinuously expands its**data ecosystem** to support **AI-driven clinical decision-making**.Researchers and institutions are encouraged to **contribute new datasets and methodologies**.249 +==== **Programming Languages:** ==== 138 138 139 -** For additionaltechnicaldocumentation**:251 +* **Python** for AI and data processing. 140 140 141 -* **GitHub Repository**: [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]] 142 -* **EBRAINS Collaboration Page**: [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]] 253 +==== **Frameworks:** ==== 143 143 144 -**If you experience issues integrating data**, open a **GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**. 255 +* **TensorFlow** and **PyTorch** for machine learning. 256 +* **Flask** or **FastAPI** for backend services. 145 145 258 +==== **Visualization:** ==== 259 + 260 +* **Plotly** and **Matplotlib** for interactive and static visualizations. 261 + 262 +==== **EBRAINS Services:** ==== 263 + 264 +* **Collaboratory Lab** for running Notebooks. 265 +* **Buckets** for storing large datasets. 266 + 146 146 ---- 147 147 148 -This **updated methodology** now incorporates [[https:~~/~~/github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/biomarker_ontology>>https://Neuromarker]] for standardized biomarker classification, enabling **cross-disease AI training** across neurodegenerative disorders. 269 +=== **Why This Matters** === 270 + 271 +* The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful. 272 +* It enables real-time tracking of disease progression across the three diagnostic axes. 273 +* It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.
- workflow neurodiagnoses.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.manuelmenendez - Size
-
... ... @@ -1,1 +1,0 @@ 1 -157.5 KB - Content