Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 21.1
edited by manuelmenendez
on 2025/02/14 22:09
Change comment: There is no comment for this version
To version 2.1
edited by manuelmenendez
on 2025/01/27 23:07
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,148 +1,106 @@
1 -Here is the updated **Methodology** section for the EBRAINS Wiki, incorporating the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)** for **biomarker classification across all neurodegenerative diseases**.
1 +=== **Overview** ===
2 2  
3 -----
3 +This section describes the step-by-step process used in the **Neurodiagnoses** project to develop a novel diagnostic framework for neurological diseases. The methodology integrates artificial intelligence (AI), biomedical ontologies, and computational neuroscience to create a structured, interpretable, and scalable diagnostic system.
4 4  
5 -== **Neurodiagnoses AI: Multimodal AI for Neurodiagnostic Predictions** ==
6 -
7 -=== **Project Overview** ===
8 -
9 -Neurodiagnoses AI implements **AI-driven diagnostic and prognostic models** for central nervous system (CNS) disorders, expanding the **Florey Dementia Index (FDI) methodology** to a broader set of neurological conditions. The approach integrates **multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics) and employs machine learning models to provide **explainable, real-time diagnostic insights**. This framework now incorporates **Neuromarker**, a **generalized biomarker ontology** that categorizes biomarkers across neurodegenerative diseases, enabling **standardized, cross-disease AI training**.
10 -
11 -== **Neuromarker: Generalized Biomarker Ontology** ==
12 -
13 -Neuromarker extends the **Common Alzheimer’s Disease Research Ontology (CADRO)** into a **cross-disease biomarker categorization framework** applicable to all neurodegenerative diseases (NDDs). It allows for **standardized classification, AI-based feature extraction, and multimodal integration**.
14 -
15 -=== **Core Biomarker Categories** ===
16 -
17 -The following ontology is used within **Neurodiagnoses AI** for biomarker categorization:
18 -
19 -|=**Category**|=**Description**
20 -|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic)
21 -|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein)
22 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL
23 -|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers
24 -|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers
25 -|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS)
26 -|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores
27 -|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities
28 -
29 29  ----
30 30  
31 -== **How to Use External Databases in Neurodiagnoses** ==
7 +=== **1. Data Integration** ===
32 32  
33 -To enhance diagnostic accuracy, Neurodiagnoses AI integrates data from **multiple biomedical and neurological research databases**. Researchers can follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework.
9 +==== **Data Sources** ====
34 34  
35 -=== **Potential Data Sources** ===
11 +* **Biomedical Ontologies**:
12 +** Human Phenotype Ontology (HPO) for phenotypic abnormalities.
13 +** Gene Ontology (GO) for molecular and cellular processes.
14 +* **Neuroimaging Datasets**:
15 +** Example: Alzheimer’s Disease Neuroimaging Initiative (ADNI), OpenNeuro.
16 +* **Clinical and Biomarker Data**:
17 +** Anonymized clinical reports, molecular biomarkers, and test results.
36 36  
37 -Neurodiagnoses maintains an **updated list** of biomedical datasets relevant to neurodegenerative diseases:
19 +==== **Data Preprocessing** ====
38 38  
39 -* **ADNI**: Alzheimer's Disease Imaging & Biomarkers → [[ADNI>>url:https://adni.loni.usc.edu/]]
40 -* **PPMI**: Parkinson’s Disease Imaging & Biospecimens → [[PPMI>>url:https://www.ppmi-info.org/]]
41 -* **GP2**: Whole-Genome Sequencing for PD → [[GP2>>url:https://gp2.org/]]
42 -* **Enroll-HD**: Huntington’s Disease Clinical & Genetic Data → [[Enroll-HD>>url:https://www.enroll-hd.org/]]
43 -* **GAAIN**: Multi-Source Alzheimer’s Data Aggregation → [[GAAIN>>url:https://gaain.org/]]
44 -* **UK Biobank**: Population-Wide Genetic, Imaging & Health Records → [[UK Biobank>>url:https://www.ukbiobank.ac.uk/]]
45 -* **DPUK**: Dementia & Aging Data → [[DPUK>>url:https://www.dementiasplatform.uk/]]
46 -* **PRION Registry**: Prion Diseases Clinical & Genetic Data → [[PRION Registry>>url:https://prionregistry.org/]]
47 -* **DECIPHER**: Rare Genetic Disorder Genomic Variants → [[DECIPHER>>url:https://decipher.sanger.ac.uk/]]
21 +1. **Standardization**: Ensure all data sources are normalized to a common format.
22 +1. **Feature Selection**: Identify relevant features for diagnosis (e.g., biomarkers, imaging scores).
23 +1. **Data Cleaning**: Handle missing values and remove duplicates.
48 48  
49 49  ----
50 50  
51 -== **1. Register for Access** ==
27 +=== **2. AI-Based Analysis** ===
52 52  
53 -* Each external database requires **individual registration and access approval**.
54 -* Ensure compliance with **ethical approvals and data usage agreements** before integrating datasets into Neurodiagnoses.
55 -* Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data.
29 +==== **Model Development** ====
56 56  
57 -----
31 +* **Embedding Models**: Use pre-trained models like BioBERT or BioLORD for text data.
32 +* **Classification Models**:
33 +** Algorithms: Random Forest, Support Vector Machines (SVM), or neural networks.
34 +** Purpose: Predict the likelihood of specific neurological conditions based on input data.
58 58  
59 -== **2. Download & Prepare Data** ==
36 +==== **Dimensionality Reduction and Interpretability** ====
60 60  
61 -* Download datasets while adhering to **database usage policies**.
62 -* Ensure files meet **Neurodiagnoses format requirements**:
38 +* Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies) to connect model dimensions to ontology concepts.
39 +* Evaluate interpretability using metrics like the Area Under the Interpretability Curve (AUIC).
63 63  
64 -|=**Data Type**|=**Accepted Formats**
65 -|**Tabular Data**|.csv, .tsv
66 -|**Neuroimaging**|.nii, .dcm
67 -|**Genomic Data**|.fasta, .vcf
68 -|**Clinical Metadata**|.json, .xml
69 -
70 -* **Mandatory Fields for Integration**:
71 -** **Subject ID**: Unique patient identifier
72 -** **Diagnosis**: Standardized disease classification
73 -** **Biomarkers**: CSF, plasma, or imaging biomarkers
74 -** **Genetic Data**: Whole-genome or exome sequencing
75 -** **Neuroimaging Metadata**: MRI/PET acquisition parameters
76 -
77 77  ----
78 78  
79 -== **3. Upload Data to Neurodiagnoses** ==
43 +=== **3. Diagnostic Framework** ===
80 80  
81 -=== **Option 1: Upload to EBRAINS Bucket** ===
45 +==== **Axes of Diagnosis** ====
82 82  
83 -* Location: **EBRAINS Neurodiagnoses Bucket**
84 -* Ensure **correct metadata tagging** before submission.
47 +The framework organizes diagnostic data into three axes:
85 85  
86 -=== **Option 2: Contribute via GitHub Repository** ===
49 +1. **Etiology**: Genetic and environmental risk factors.
50 +1. **Molecular Markers**: Biomarkers such as amyloid-beta, tau, and alpha-synuclein.
51 +1. **Neuroanatomical Correlations**: Results from neuroimaging (e.g., MRI, PET).
87 87  
88 -* Location: **GitHub Data Repository**
89 -* Create a **new folder under /data/** and include a **dataset description**.
90 -* **For large datasets**, contact project administrators before uploading.
53 +==== **Recommendation System** ====
91 91  
92 -----
55 +* Suggests additional tests or biomarkers if gaps are detected in the data.
56 +* Prioritizes tests based on clinical impact and cost-effectiveness.
93 93  
94 -== **4. Integrate Data into AI Models** ==
95 -
96 -* Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**.
97 -* **Standardize neuroimaging and biomarker formats** using harmonization tools.
98 -* Use **machine learning models** to handle **missing data** and **feature extraction**.
99 -* Train AI models with **newly integrated patient cohorts**.
100 -
101 -**Reference**: See docs/data_processing.md for detailed instructions.
102 -
103 103  ----
104 104  
105 -== **AI-Driven Biomarker Categorization** ==
60 +=== **4. Computational Workflow** ===
106 106  
107 -Neurodiagnoses employs **AI models** for biomarker classification:
62 +1. **Data Loading**: Import data from storage (Drive or Bucket).
63 +1. **Feature Engineering**: Generate derived features from the raw data.
64 +1. **Model Training**:
65 +1*. Split data into training, validation, and test sets.
66 +1*. Train models with cross-validation to ensure robustness.
67 +1. **Evaluation**:
68 +1*. Metrics: Accuracy, F1-Score, AUIC for interpretability.
69 +1*. Compare against baseline models and domain benchmarks.
108 108  
109 -|=**Model Type**|=**Application**
110 -|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases
111 -|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers
112 -|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data
113 -
114 114  ----
115 115  
116 -== [[image:workflow neurodiagnoses.png]] ==
73 +=== **5. Validation** ===
117 117  
118 -== **Collaboration & Partnerships** ==
75 +==== **Internal Validation** ====
119 119  
120 -=== **Partnering with Data Providers** ===
77 +* Test the system using simulated datasets and known clinical cases.
78 +* Fine-tune models based on validation results.
121 121  
122 -Neurodiagnoses seeks partnerships with data repositories to:
80 +==== **External Validation** ====
123 123  
124 -* Enable **API-based data integration** for real-time processing.
125 -* Co-develop **harmonized AI-ready datasets** with standardized annotations.
126 -* Secure **funding opportunities** through joint grant applications.
82 +* Collaborate with research institutions and hospitals to test the system in real-world settings.
83 +* Use anonymized patient data to ensure privacy compliance.
127 127  
128 -**Interested in Partnering?**
129 -
130 -* If you represent a **research consortium or database provider**, reach out to explore **data-sharing agreements**.
131 -* **Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]
132 -
133 133  ----
134 134  
135 -== **Final Notes** ==
87 +=== **6. Collaborative Development** ===
136 136  
137 -Neurodiagnoses continuously expands its **data ecosystem** to support **AI-driven clinical decision-making**. Researchers and institutions are encouraged to **contribute new datasets and methodologies**.
89 +The project is open to contributions from researchers, clinicians, and developers. Key tools include:
138 138  
139 -**For additional technical documentation**:
91 +* **Jupyter Notebooks**: For data analysis and pipeline development.
92 +* **Wiki Pages**: For documenting methods and results.
93 +* **Drive and Bucket**: For sharing code, data, and outputs.
140 140  
141 -* **GitHub Repository**: [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]]
142 -* **EBRAINS Collaboration Page**: [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]]
143 -
144 -**If you experience issues integrating data**, open a **GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**.
145 -
146 146  ----
147 147  
148 -This **updated methodology** now incorporates [[https:~~/~~/github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/biomarker_ontology>>https://Neuromarker]] for standardized biomarker classification, enabling **cross-disease AI training** across neurodegenerative disorders.
97 +=== **7. Tools and Technologies** ===
98 +
99 +* **Programming Languages**: Python for AI and data processing.
100 +* **Frameworks**:
101 +** TensorFlow and PyTorch for machine learning.
102 +** Flask or FastAPI for backend services.
103 +* **Visualization**: Plotly and Matplotlib for interactive and static visualizations.
104 +* **EBRAINS Services**:
105 +** Collaboratory Lab for running Notebooks.
106 +** Buckets for storing large datasets.
workflow neurodiagnoses.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.manuelmenendez
Size
... ... @@ -1,1 +1,0 @@
1 -157.5 KB
Content