Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 21.1
edited by manuelmenendez
on 2025/02/14 22:09
Change comment: There is no comment for this version
To version 22.1
edited by manuelmenendez
on 2025/02/15 12:55
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,21 +1,13 @@
1 -Here is the updated **Methodology** section for the EBRAINS Wiki, incorporating the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)** for **biomarker classification across all neurodegenerative diseases**.
1 +**Neurodiagnoses AI** is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. Building upon the Florey Dementia Index (FDI) methodology, it now encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)**, which standardizes biomarker classification across all neurodegenerative diseases, facilitating cross-disease AI training.
2 2  
3 -----
3 +**Neuromarker: Generalized Biomarker Ontology**
4 4  
5 -== **Neurodiagnoses AI: Multimodal AI for Neurodiagnostic Predictions** ==
5 +Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration.
6 6  
7 -=== **Project Overview** ===
7 +**Core Biomarker Categories**
8 8  
9 -Neurodiagnoses AI implements **AI-driven diagnostic and prognostic models** for central nervous system (CNS) disorders, expanding the **Florey Dementia Index (FDI) methodology** to a broader set of neurological conditions. The approach integrates **multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics) and employs machine learning models to provide **explainable, real-time diagnostic insights**. This framework now incorporates **Neuromarker**, a **generalized biomarker ontology** that categorizes biomarkers across neurodegenerative diseases, enabling **standardized, cross-disease AI training**.
9 +Within the Neurodiagnoses AI framework, biomarkers are categorized as follows:
10 10  
11 -== **Neuromarker: Generalized Biomarker Ontology** ==
12 -
13 -Neuromarker extends the **Common Alzheimer’s Disease Research Ontology (CADRO)** into a **cross-disease biomarker categorization framework** applicable to all neurodegenerative diseases (NDDs). It allows for **standardized classification, AI-based feature extraction, and multimodal integration**.
14 -
15 -=== **Core Biomarker Categories** ===
16 -
17 -The following ontology is used within **Neurodiagnoses AI** for biomarker categorization:
18 -
19 19  |=**Category**|=**Description**
20 20  |**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic)
21 21  |**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein)
... ... @@ -26,123 +26,89 @@
26 26  |**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores
27 27  |**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities
28 28  
29 -----
21 +**Integrating External Databases into Neurodiagnoses**
30 30  
31 -== **How to Use External Databases in Neurodiagnoses** ==
23 +To enhance diagnostic precision, Neurodiagnoses AI incorporates data from multiple biomedical and neurological research databases. Researchers can integrate external datasets by following these steps:
32 32  
33 -To enhance diagnostic accuracy, Neurodiagnoses AI integrates data from **multiple biomedical and neurological research databases**. Researchers can follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework.
25 +1. (((
26 +**Register for Access**
34 34  
35 -=== **Potential Data Sources** ===
28 +* Each external database requires individual registration and access approval.
29 +* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses.
30 +* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data.
31 +)))
32 +1. (((
33 +**Download & Prepare Data**
36 36  
37 -Neurodiagnoses maintains an **updated list** of biomedical datasets relevant to neurodegenerative diseases:
35 +* Download datasets while adhering to database usage policies.
36 +* (((
37 +Ensure files meet Neurodiagnoses format requirements:
38 38  
39 -* **ADNI**: Alzheimer's Disease Imaging & Biomarkers → [[ADNI>>url:https://adni.loni.usc.edu/]]
40 -* **PPMI**: Parkinson’s Disease Imaging & Biospecimens → [[PPMI>>url:https://www.ppmi-info.org/]]
41 -* **GP2**: Whole-Genome Sequencing for PD → [[GP2>>url:https://gp2.org/]]
42 -* **Enroll-HD**: Huntington’s Disease Clinical & Genetic Data → [[Enroll-HD>>url:https://www.enroll-hd.org/]]
43 -* **GAAIN**: Multi-Source Alzheimer’s Data Aggregation → [[GAAIN>>url:https://gaain.org/]]
44 -* **UK Biobank**: Population-Wide Genetic, Imaging & Health Records → [[UK Biobank>>url:https://www.ukbiobank.ac.uk/]]
45 -* **DPUK**: Dementia & Aging Data → [[DPUK>>url:https://www.dementiasplatform.uk/]]
46 -* **PRION Registry**: Prion Diseases Clinical & Genetic Data → [[PRION Registry>>url:https://prionregistry.org/]]
47 -* **DECIPHER**: Rare Genetic Disorder Genomic Variants → [[DECIPHER>>url:https://decipher.sanger.ac.uk/]]
48 -
49 -----
50 -
51 -== **1. Register for Access** ==
52 -
53 -* Each external database requires **individual registration and access approval**.
54 -* Ensure compliance with **ethical approvals and data usage agreements** before integrating datasets into Neurodiagnoses.
55 -* Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data.
56 -
57 -----
58 -
59 -== **2. Download & Prepare Data** ==
60 -
61 -* Download datasets while adhering to **database usage policies**.
62 -* Ensure files meet **Neurodiagnoses format requirements**:
63 -
64 64  |=**Data Type**|=**Accepted Formats**
65 65  |**Tabular Data**|.csv, .tsv
66 66  |**Neuroimaging**|.nii, .dcm
67 67  |**Genomic Data**|.fasta, .vcf
68 68  |**Clinical Metadata**|.json, .xml
44 +)))
45 +* (((
46 +**Mandatory Fields for Integration**:
69 69  
70 -* **Mandatory Fields for Integration**:
71 -** **Subject ID**: Unique patient identifier
72 -** **Diagnosis**: Standardized disease classification
73 -** **Biomarkers**: CSF, plasma, or imaging biomarkers
74 -** **Genetic Data**: Whole-genome or exome sequencing
75 -** **Neuroimaging Metadata**: MRI/PET acquisition parameters
48 +* Subject ID: Unique patient identifier
49 +* Diagnosis: Standardized disease classification
50 +* Biomarkers: CSF, plasma, or imaging biomarkers
51 +* Genetic Data: Whole-genome or exome sequencing
52 +* Neuroimaging Metadata: MRI/PET acquisition parameters
53 +)))
54 +)))
55 +1. (((
56 +**Upload Data to Neurodiagnoses**
76 76  
77 -----
58 +* (((
59 +**Option 1: Upload to EBRAINS Bucket**
78 78  
79 -== **3. Upload Data to Neurodiagnoses** ==
61 +* Location: EBRAINS Neurodiagnoses Bucket
62 +* Ensure correct metadata tagging before submission.
63 +)))
64 +* (((
65 +**Option 2: Contribute via GitHub Repository**
80 80  
81 -=== **Option 1: Upload to EBRAINS Bucket** ===
67 +* Location: GitHub Data Repository
68 +* Create a new folder under /data/ and include a dataset description.
69 +* For large datasets, contact project administrators before uploading.
70 +)))
71 +)))
72 +1. (((
73 +**Integrate Data into AI Models**
82 82  
83 -* Location: **EBRAINS Neurodiagnoses Bucket**
84 -* Ensure **correct metadata tagging** before submission.
75 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts.
76 +* Standardize neuroimaging and biomarker formats using harmonization tools.
77 +* Utilize machine learning models to handle missing data and feature extraction.
78 +* Train AI models with newly integrated patient cohorts.
85 85  
86 -=== **Option 2: Contribute via GitHub Repository** ===
87 -
88 -* Location: **GitHub Data Repository**
89 -* Create a **new folder under /data/** and include a **dataset description**.
90 -* **For large datasets**, contact project administrators before uploading.
91 -
92 -----
93 -
94 -== **4. Integrate Data into AI Models** ==
95 -
96 -* Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**.
97 -* **Standardize neuroimaging and biomarker formats** using harmonization tools.
98 -* Use **machine learning models** to handle **missing data** and **feature extraction**.
99 -* Train AI models with **newly integrated patient cohorts**.
100 -
101 101  **Reference**: See docs/data_processing.md for detailed instructions.
81 +)))
102 102  
103 -----
83 +**AI-Driven Biomarker Categorization**
104 104  
105 -== **AI-Driven Biomarker Categorization** ==
85 +Neurodiagnoses employs advanced AI models for biomarker classification:
106 106  
107 -Neurodiagnoses employs **AI models** for biomarker classification:
108 -
109 109  |=**Model Type**|=**Application**
110 110  |**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases
111 111  |**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers
112 112  |**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data
113 113  
114 -----
92 +**Collaboration & Partnerships**
115 115  
116 -== [[image:workflow neurodiagnoses.png]] ==
94 +Neurodiagnoses actively seeks partnerships with data providers to:
117 117  
118 -== **Collaboration & Partnerships** ==
96 +* Enable API-based data integration for real-time processing.
97 +* Co-develop harmonized AI-ready datasets with standardized annotations.
98 +* Secure funding opportunities through joint grant applications.
119 119  
120 -=== **Partnering with Data Providers** ===
121 -
122 -Neurodiagnoses seeks partnerships with data repositories to:
123 -
124 -* Enable **API-based data integration** for real-time processing.
125 -* Co-develop **harmonized AI-ready datasets** with standardized annotations.
126 -* Secure **funding opportunities** through joint grant applications.
127 -
128 128  **Interested in Partnering?**
129 129  
130 -* If you represent a **research consortium or database provider**, reach out to explore **data-sharing agreements**.
131 -* **Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]
102 +If you represent a research consortium or database provider, reach out to explore data-sharing agreements.
132 132  
133 -----
104 +**Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]
134 134  
135 -== **Final Notes** ==
136 -
137 -Neurodiagnoses continuously expands its **data ecosystem** to support **AI-driven clinical decision-making**. Researchers and institutions are encouraged to **contribute new datasets and methodologies**.
138 -
139 -**For additional technical documentation**:
140 -
141 -* **GitHub Repository**: [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]]
142 -* **EBRAINS Collaboration Page**: [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]]
143 -
144 -**If you experience issues integrating data**, open a **GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**.
145 -
146 -----
147 -
148 -This **updated methodology** now incorporates [[https:~~/~~/github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/biomarker_ontology>>https://Neuromarker]] for standardized biomarker classification, enabling **cross-disease AI training** across neurodegenerative disorders.
106 +