Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 21.1
edited by manuelmenendez
on 2025/02/14 22:09
on 2025/02/14 22:09
Change comment:
There is no comment for this version
To version 26.1
edited by manuelmenendez
on 2025/02/22 18:40
on 2025/02/22 18:40
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,25 +1,21 @@ 1 - Here is theupdated**Methodology**sectionfor theEBRAINSWiki,incorporatingthe **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)**for**biomarker classification across allneurodegenerativediseases**.1 +**Neurodiagnoses AI** is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. It encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker) **and** **Disease Knowledge Transfer (DKT), which standardizes disease and biomarker classification across all CNS diseases, facilitating cross-disease AI training. 2 2 3 - ----3 +**Neuromarker: Generalized Biomarker Ontology** 4 4 5 - == **NeurodiagnosesAI:MultimodalAIforNeurodiagnosticPredictions**==5 +Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration. 6 6 7 - ===**Project Overview**===7 +**Recommended Software** 8 8 9 - NeurodiagnosesAIimplements**AI-driven diagnosticand prognostic models**forcentral nervoussystem(CNS) disorders, expandingthe**Florey DementiaIndex (FDI) methodology** to a broadersetof neurologicalconditions. Theapproachintegrates**multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics)andemploys machinelearning modelsoprovide**explainable,real-timeiagnostic insights**.This framework now incorporates**Neuromarker**, a **generalized biomarkerntology** thatcategorizes biomarkersacrossneurodegenerative diseases, enabling **standardized,cross-disease AItraining**.9 +There is a suite of software that can help implement the workflow needed in Neurodiagnoses. Find a list of recommendations [[here>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/recommended_software]]. 10 10 11 - ==**Neuromarker:GeneralizedBiomarkerOntology**==11 +**Core Biomarker Categories** 12 12 13 - Neuromarker extendsthe**Common Alzheimer’s Disease Research Ontology (CADRO)** intoa **cross-diseasebiomarkercategorizationframework**applicable toll neurodegenerative diseases(NDDs). Itallows for**standardizedclassification,AI-basedfeature extraction, and multimodalintegration**.13 +Within the Neurodiagnoses AI framework, biomarkers are categorized as follows: 14 14 15 -=== **Core Biomarker Categories** === 16 - 17 -The following ontology is used within **Neurodiagnoses AI** for biomarker categorization: 18 - 19 19 |=**Category**|=**Description** 20 20 |**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 21 21 |**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 22 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL 18 +|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL, autoantiboides 23 23 |**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 24 24 |**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 25 25 |**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) ... ... @@ -26,123 +26,100 @@ 26 26 |**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 27 27 |**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 28 28 29 - ----25 +**Integrating External Databases into Neurodiagnoses** 30 30 31 - == **HowtoUseExternalDatabases inNeurodiagnoses**==27 +To enhance diagnostic precision, Neurodiagnoses AI incorporates data from multiple biomedical and neurological research databases. Researchers can integrate external datasets by following these steps: 32 32 33 -To enhance diagnostic accuracy, Neurodiagnoses AI integrates data from **multiple biomedical and neurological research databases**. Researchers can follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework. 29 +1. ((( 30 +**Register for Access** 34 34 35 -=== **Potential Data Sources** === 32 +* Each external database requires individual registration and access approval. 33 +* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses. 34 +* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data. 35 +))) 36 +1. ((( 37 +**Download & Prepare Data** 36 36 37 -Neurodiagnoses maintains an **updated list** of biomedical datasets relevant to neurodegenerative diseases: 39 +* Download datasets while adhering to database usage policies. 40 +* ((( 41 +Ensure files meet Neurodiagnoses format requirements: 38 38 39 -* **ADNI**: Alzheimer's Disease Imaging & Biomarkers → [[ADNI>>url:https://adni.loni.usc.edu/]] 40 -* **PPMI**: Parkinson’s Disease Imaging & Biospecimens → [[PPMI>>url:https://www.ppmi-info.org/]] 41 -* **GP2**: Whole-Genome Sequencing for PD → [[GP2>>url:https://gp2.org/]] 42 -* **Enroll-HD**: Huntington’s Disease Clinical & Genetic Data → [[Enroll-HD>>url:https://www.enroll-hd.org/]] 43 -* **GAAIN**: Multi-Source Alzheimer’s Data Aggregation → [[GAAIN>>url:https://gaain.org/]] 44 -* **UK Biobank**: Population-Wide Genetic, Imaging & Health Records → [[UK Biobank>>url:https://www.ukbiobank.ac.uk/]] 45 -* **DPUK**: Dementia & Aging Data → [[DPUK>>url:https://www.dementiasplatform.uk/]] 46 -* **PRION Registry**: Prion Diseases Clinical & Genetic Data → [[PRION Registry>>url:https://prionregistry.org/]] 47 -* **DECIPHER**: Rare Genetic Disorder Genomic Variants → [[DECIPHER>>url:https://decipher.sanger.ac.uk/]] 48 - 49 ----- 50 - 51 -== **1. Register for Access** == 52 - 53 -* Each external database requires **individual registration and access approval**. 54 -* Ensure compliance with **ethical approvals and data usage agreements** before integrating datasets into Neurodiagnoses. 55 -* Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data. 56 - 57 ----- 58 - 59 -== **2. Download & Prepare Data** == 60 - 61 -* Download datasets while adhering to **database usage policies**. 62 -* Ensure files meet **Neurodiagnoses format requirements**: 63 - 64 64 |=**Data Type**|=**Accepted Formats** 65 65 |**Tabular Data**|.csv, .tsv 66 66 |**Neuroimaging**|.nii, .dcm 67 67 |**Genomic Data**|.fasta, .vcf 68 68 |**Clinical Metadata**|.json, .xml 48 +))) 49 +* ((( 50 +**Mandatory Fields for Integration**: 69 69 70 -* **Mandatory Fields for Integration**: 71 -** **Subject ID**: Unique patient identifier 72 -** **Diagnosis**: Standardized disease classification 73 -** **Biomarkers**: CSF, plasma, or imaging biomarkers 74 -** **Genetic Data**: Whole-genome or exome sequencing 75 -** **Neuroimaging Metadata**: MRI/PET acquisition parameters 52 +* Subject ID: Unique patient identifier 53 +* Diagnosis: Standardized disease classification 54 +* Biomarkers: CSF, plasma, or imaging biomarkers 55 +* Genetic Data: Whole-genome or exome sequencing 56 +* Neuroimaging Metadata: MRI/PET acquisition parameters 57 +))) 58 +))) 59 +1. ((( 60 +**Upload Data to Neurodiagnoses** 76 76 77 ----- 62 +* ((( 63 +**Option 1: Upload to EBRAINS Bucket** 78 78 79 -== **3. Upload Data to Neurodiagnoses** == 65 +* Location: EBRAINS Neurodiagnoses Bucket 66 +* Ensure correct metadata tagging before submission. 67 +))) 68 +* ((( 69 +**Option 2: Contribute via GitHub Repository** 80 80 81 -=== **Option 1: Upload to EBRAINS Bucket** === 71 +* Location: GitHub Data Repository 72 +* Create a new folder under /data/ and include a dataset description. 73 +* For large datasets, contact project administrators before uploading. 74 +))) 75 +))) 76 +1. ((( 77 +**Integrate Data into AI Models** 82 82 83 -* Location: **EBRAINS Neurodiagnoses Bucket** 84 -* Ensure **correct metadata tagging** before submission. 79 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 80 +* Standardize neuroimaging and biomarker formats using harmonization tools. 81 +* Utilize machine learning models to handle missing data and feature extraction. 82 +* Train AI models with newly integrated patient cohorts. 85 85 86 -=== **Option 2: Contribute via GitHub Repository** === 87 - 88 -* Location: **GitHub Data Repository** 89 -* Create a **new folder under /data/** and include a **dataset description**. 90 -* **For large datasets**, contact project administrators before uploading. 91 - 92 ----- 93 - 94 -== **4. Integrate Data into AI Models** == 95 - 96 -* Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**. 97 -* **Standardize neuroimaging and biomarker formats** using harmonization tools. 98 -* Use **machine learning models** to handle **missing data** and **feature extraction**. 99 -* Train AI models with **newly integrated patient cohorts**. 100 - 101 101 **Reference**: See docs/data_processing.md for detailed instructions. 85 +))) 102 102 103 -- ---87 +**AI-Driven Biomarker Categorization** 104 104 105 - == **AI-DrivenBiomarkerCategorization** ==89 +Neurodiagnoses employs advanced AI models for biomarker classification: 106 106 107 -Neurodiagnoses employs **AI models** for biomarker classification: 108 - 109 109 |=**Model Type**|=**Application** 110 110 |**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 111 111 |**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 112 112 |**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 113 113 114 - ----96 +**Collaboration & Partnerships** 115 115 116 - == [[image:workflow neurodiagnoses.png]]==98 +Neurodiagnoses actively seeks partnerships with data providers to: 117 117 118 -== **Collaboration & Partnerships** == 100 +* Enable API-based data integration for real-time processing. 101 +* Co-develop harmonized AI-ready datasets with standardized annotations. 102 +* Secure funding opportunities through joint grant applications. 119 119 120 -=== **Partnering with Data Providers** === 121 - 122 -Neurodiagnoses seeks partnerships with data repositories to: 123 - 124 -* Enable **API-based data integration** for real-time processing. 125 -* Co-develop **harmonized AI-ready datasets** with standardized annotations. 126 -* Secure **funding opportunities** through joint grant applications. 127 - 128 128 **Interested in Partnering?** 129 129 130 -* If you represent a **research consortium or database provider**, reach out to explore **data-sharing agreements**. 131 -* **Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 106 +If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 132 132 133 - ----108 +**Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 134 134 135 - ==**Final Notes**==110 +**Final Notes** 136 136 137 -Neurodiagnoses continuously expand sits**data ecosystem**tosupport**AI-drivenclinical decision-making**.Researchersandnstitutionsareencouragedto **contributew datasetsandmethodologies**.112 +Neurodiagnoses AI is committed to advancing the integration of artificial intelligence in neurodiagnostic processes. By continuously expanding our data ecosystem and incorporating standardized biomarker classifications through the Neuromarker ontology, we aim to enhance cross-disease AI training and improve diagnostic accuracy across neurodegenerative disorders. 138 138 139 - **For additional technicaldocumentation**:114 +We encourage researchers and institutions to contribute new datasets and methodologies to further enrich this collaborative platform. Your participation is vital in driving innovation and fostering a deeper understanding of complex neurological conditions. 140 140 141 -* **GitHub Repository**: [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]] 142 -* **EBRAINS Collaboration Page**: [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]] 116 +**For additional technical documentation and collaboration opportunities:** 143 143 144 -**If you experience issues integrating data**, open a **GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**. 118 +* **GitHub Repository:** [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]] 119 +* **EBRAINS Collaboration Page:** [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]] 145 145 146 ----- 147 - 148 -This **updated methodology** now incorporates [[https:~~/~~/github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/biomarker_ontology>>https://Neuromarker]] for standardized biomarker classification, enabling **cross-disease AI training** across neurodegenerative disorders. 121 +If you encounter any issues during data integration or have suggestions for improvement, please open a GitHub Issue or consult the EBRAINS Neurodiagnoses Forum. Together, we can advance the field of neurodiagnostics and contribute to better patient outcomes.