Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 22.1
edited by manuelmenendez
on 2025/02/15 12:55
Change comment: There is no comment for this version
To version 10.1
edited by manuelmenendez
on 2025/02/01 18:31
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,106 +1,189 @@
1 -**Neurodiagnoses AI** is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. Building upon the Florey Dementia Index (FDI) methodology, it now encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)**, which standardizes biomarker classification across all neurodegenerative diseases, facilitating cross-disease AI training.
1 +==== **Overview** ====
2 2  
3 -**Neuromarker: Generalized Biomarker Ontology**
3 +This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**.
4 4  
5 -Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration.
5 +=== **Workflow** ===
6 6  
7 -**Core Biomarker Categories**
7 +1. (((
8 +**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/users/manuelmenendezgonzalez/projects/1/views/1]]**
8 8  
9 -Within the Neurodiagnoses AI framework, biomarkers are categorized as follows:
10 +* Create a **GitHub repository** for AI scripts and models.
11 +* Use **GitHub Projects** to manage research milestones.
12 +)))
13 +1. (((
14 +**We Use EBRAINS for Data & Collaboration**
10 10  
11 -|=**Category**|=**Description**
12 -|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic)
13 -|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein)
14 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL
15 -|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers
16 -|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers
17 -|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS)
18 -|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores
19 -|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities
16 +* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**.
17 +* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models.
18 +* Use **EBRAINS Wiki** for structured documentation and research discussion.
19 +)))
20 20  
21 -**Integrating External Databases into Neurodiagnoses**
21 +----
22 22  
23 -To enhance diagnostic precision, Neurodiagnoses AI incorporates data from multiple biomedical and neurological research databases. Researchers can integrate external datasets by following these steps:
23 +=== **1. Data Integration** ===
24 24  
25 -1. (((
26 -**Register for Access**
25 +==== **Data Sources** ====
27 27  
28 -* Each external database requires individual registration and access approval.
29 -* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses.
30 -* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data.
31 -)))
32 -1. (((
33 -**Download & Prepare Data**
27 +**Biomedical Ontologies & Databases:**
34 34  
35 -* Download datasets while adhering to database usage policies.
36 -* (((
37 -Ensure files meet Neurodiagnoses format requirements:
29 +* **Human Phenotype Ontology (HPO)** for symptom annotation.
30 +* **Gene Ontology (GO)** for molecular and cellular processes.
38 38  
39 -|=**Data Type**|=**Accepted Formats**
40 -|**Tabular Data**|.csv, .tsv
41 -|**Neuroimaging**|.nii, .dcm
42 -|**Genomic Data**|.fasta, .vcf
43 -|**Clinical Metadata**|.json, .xml
44 -)))
45 -* (((
46 -**Mandatory Fields for Integration**:
32 +**Dimensionality Reduction and Interpretability:**
47 47  
48 -* Subject ID: Unique patient identifier
49 -* Diagnosis: Standardized disease classification
50 -* Biomarkers: CSF, plasma, or imaging biomarkers
51 -* Genetic Data: Whole-genome or exome sequencing
52 -* Neuroimaging Metadata: MRI/PET acquisition parameters
53 -)))
54 -)))
55 -1. (((
56 -**Upload Data to Neurodiagnoses**
34 +* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**.
35 +* **Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts.
57 57  
58 -* (((
59 -**Option 1: Upload to EBRAINS Bucket**
37 +**Neuroimaging & EEG/MEG Data:**
60 60  
61 -* Location: EBRAINS Neurodiagnoses Bucket
62 -* Ensure correct metadata tagging before submission.
63 -)))
64 -* (((
65 -**Option 2: Contribute via GitHub Repository**
39 +* **MRI volumetric measures** for brain atrophy tracking.
40 +* **EEG functional connectivity patterns** (AI-Mind).
66 66  
67 -* Location: GitHub Data Repository
68 -* Create a new folder under /data/ and include a dataset description.
69 -* For large datasets, contact project administrators before uploading.
70 -)))
71 -)))
72 -1. (((
73 -**Integrate Data into AI Models**
42 +**Clinical & Biomarker Data:**
74 74  
75 -* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts.
76 -* Standardize neuroimaging and biomarker formats using harmonization tools.
77 -* Utilize machine learning models to handle missing data and feature extraction.
78 -* Train AI models with newly integrated patient cohorts.
44 +* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light).
45 +* **Sleep monitoring and actigraphy data** (ADIS).
79 79  
80 -**Reference**: See docs/data_processing.md for detailed instructions.
81 -)))
47 +**Federated Learning Integration:**
82 82  
83 -**AI-Driven Biomarker Categorization**
49 +* **Secure multi-center data harmonization** (PROMINENT).
84 84  
85 -Neurodiagnoses employs advanced AI models for biomarker classification:
51 +----
86 86  
87 -|=**Model Type**|=**Application**
88 -|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases
89 -|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers
90 -|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data
53 +==== **Annotation System for Multi-Modal Data** ====
91 91  
92 -**Collaboration & Partnerships**
55 +To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will:
93 93  
94 -Neurodiagnoses actively seeks partnerships with data providers to:
57 +* **Assign standardized metadata tags** to diagnostic features.
58 +* **Provide contextual explanations** for AI-based classifications.
59 +* **Track temporal disease progression annotations** to identify long-term trends.
95 95  
96 -* Enable API-based data integration for real-time processing.
97 -* Co-develop harmonized AI-ready datasets with standardized annotations.
98 -* Secure funding opportunities through joint grant applications.
61 +----
99 99  
100 -**Interested in Partnering?**
63 +=== **2. AI-Based Analysis** ===
101 101  
102 -If you represent a research consortium or database provider, reach out to explore data-sharing agreements.
65 +==== **Machine Learning & Deep Learning Models** ====
103 103  
104 -**Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]
67 +**Risk Prediction Models:**
105 105  
106 -
69 +* **LETHE’s cognitive risk prediction model** integrated into the annotation framework.
70 +
71 +**Biomarker Classification & Probabilistic Imputation:**
72 +
73 +* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**.
74 +
75 +**Neuroimaging Feature Extraction:**
76 +
77 +* **MRI & EEG data** annotated with **neuroanatomical feature labels**.
78 +
79 +==== **AI-Powered Annotation System** ====
80 +
81 +* Uses **SHAP-based interpretability tools** to explain model decisions.
82 +* Generates **automated clinical annotations** in structured reports.
83 +* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**).
84 +
85 +----
86 +
87 +=== **3. Diagnostic Framework & Clinical Decision Support** ===
88 +
89 +==== **Tridimensional Diagnostic Axes** ====
90 +
91 +**Axis 1: Etiology (Pathogenic Mechanisms)**
92 +
93 +* Classification based on **genetic markers, cellular pathways, and environmental risk factors**.
94 +* **AI-assisted annotation** provides **causal interpretations** for clinical use.
95 +
96 +**Axis 2: Molecular Markers & Biomarkers**
97 +
98 +* **Integration of CSF, blood, and neuroimaging biomarkers**.
99 +* **Structured annotation** highlights **biological pathways linked to diagnosis**.
100 +
101 +**Axis 3: Neuroanatomoclinical Correlations**
102 +
103 +* **MRI and EEG data** provide anatomical and functional insights.
104 +* **AI-generated progression maps** annotate **brain structure-function relationships**.
105 +
106 +----
107 +
108 +=== **4. Computational Workflow & Annotation Pipelines** ===
109 +
110 +==== **Data Processing Steps** ====
111 +
112 +**Data Ingestion:**
113 +
114 +* **Harmonized datasets** stored in **EBRAINS Bucket**.
115 +* **Preprocessing pipelines** clean and standardize data.
116 +
117 +**Feature Engineering:**
118 +
119 +* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**.
120 +
121 +**AI-Generated Annotations:**
122 +
123 +* **Automated tagging** of diagnostic features in **structured reports**.
124 +* **Explainability modules (SHAP, LIME)** ensure transparency in predictions.
125 +
126 +**Clinical Decision Support Integration:**
127 +
128 +* **AI-annotated findings** fed into **interactive dashboards**.
129 +* **Clinicians can adjust, validate, and modify annotations**.
130 +
131 +----
132 +
133 +=== **5. Validation & Real-World Testing** ===
134 +
135 +==== **Prospective Clinical Study** ====
136 +
137 +* **Multi-center validation** of AI-based **annotations & risk stratifications**.
138 +* **Benchmarking against clinician-based diagnoses**.
139 +* **Real-world testing** of AI-powered **structured reporting**.
140 +
141 +==== **Quality Assurance & Explainability** ====
142 +
143 +* **Annotations linked to structured knowledge graphs** for improved transparency.
144 +* **Interactive annotation editor** allows clinicians to validate AI outputs.
145 +
146 +----
147 +
148 +=== **6. Collaborative Development** ===
149 +
150 +The project is **open to contributions** from **researchers, clinicians, and developers**.
151 +
152 +**Key tools include:**
153 +
154 +* **Jupyter Notebooks**: For data analysis and pipeline development.
155 +** Example: **probabilistic imputation**
156 +* **Wiki Pages**: For documenting methods and results.
157 +* **Drive and Bucket**: For sharing code, data, and outputs.
158 +* **Collaboration with related projects**:
159 +** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment**
160 +
161 +----
162 +
163 +=== **7. Tools and Technologies** ===
164 +
165 +==== **Programming Languages:** ====
166 +
167 +* **Python** for AI and data processing.
168 +
169 +==== **Frameworks:** ====
170 +
171 +* **TensorFlow** and **PyTorch** for machine learning.
172 +* **Flask** or **FastAPI** for backend services.
173 +
174 +==== **Visualization:** ====
175 +
176 +* **Plotly** and **Matplotlib** for interactive and static visualizations.
177 +
178 +==== **EBRAINS Services:** ====
179 +
180 +* **Collaboratory Lab** for running Notebooks.
181 +* **Buckets** for storing large datasets.
182 +
183 +----
184 +
185 +=== **Why This Matters** ===
186 +
187 +* **The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.**
188 +* **It enables real-time tracking of disease progression across the three diagnostic axes.**
189 +* **It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.**
workflow neurodiagnoses.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.manuelmenendez
Size
... ... @@ -1,1 +1,0 @@
1 -157.5 KB
Content