Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 22.1
edited by manuelmenendez
on 2025/02/15 12:55
on 2025/02/15 12:55
Change comment:
There is no comment for this version
To version 13.1
edited by manuelmenendez
on 2025/02/09 09:56
on 2025/02/09 09:56
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,106 +1,273 @@ 1 - **NeurodiagnosesAI**is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. Building upon the Florey Dementia Index (FDI) methodology, it nowencompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the**GeneralizedNeuro Biomarker Ontology Categorization (Neuromarker)**, which standardizes biomarker classification across all neurodegenerative diseases, facilitating cross-disease AI training.1 +==== **Overview** ==== 2 2 3 -** Neuromarker:GeneralizedBiomarkerOntology**3 +This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**. 4 4 5 - Neuromarkerextends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorizationframework applicable toall neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration.5 +=== **Workflow** === 6 6 7 -**Core Biomarker Categories** 7 +1. ((( 8 +**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]** 8 8 9 -Within the Neurodiagnoses AI framework, biomarkers are categorized as follows: 10 +* Create a **GitHub repository** for AI scripts and models. 11 +* Use **GitHub Projects** to manage research milestones. 12 +))) 13 +1. ((( 14 +**We Use EBRAINS for Data & Collaboration** 10 10 11 -|=**Category**|=**Description** 12 -|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 13 -|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 14 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL 15 -|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 16 -|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 17 -|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 18 -|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 19 -|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 16 +* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**. 17 +* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models. 18 +* Use **EBRAINS Wiki** for structured documentation and research discussion. 19 +))) 20 20 21 - **Integrating External Databases into Neurodiagnoses**21 +---- 22 22 23 - Toenhancediagnostic precision, NeurodiagnosesAIincorporates data from multiple biomedical and neurologicalresearch databases. Researchers canintegrate external datasets by followingthese steps:23 +=== **1. Data Integration** === 24 24 25 +== Overview == 26 + 27 + 28 +Neurodiagnoses integrates clinical data via the **EBRAINS Medical Informatics Platform (MIP)**. MIP federates decentralized clinical data, allowing Neurodiagnoses to securely access and process sensitive information for AI-based diagnostics. 29 + 30 +== How It Works == 31 + 32 + 25 25 1. ((( 26 -** Register forAccess**34 +**Authentication & API Access:** 27 27 28 -* Each external database requires individual registration and access approval. 29 -* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses. 30 -* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data. 36 +* Users must have an **EBRAINS account**. 37 +* Neurodiagnoses uses **secure API endpoints** to fetch clinical data (e.g., from the **Federation for Dementia**). 31 31 ))) 32 32 1. ((( 33 -**D ownload&Prepare Data**40 +**Data Mapping & Harmonization:** 34 34 35 -* Download datasets while adhering to database usage policies. 36 -* ((( 37 -Ensure files meet Neurodiagnoses format requirements: 38 - 39 -|=**Data Type**|=**Accepted Formats** 40 -|**Tabular Data**|.csv, .tsv 41 -|**Neuroimaging**|.nii, .dcm 42 -|**Genomic Data**|.fasta, .vcf 43 -|**Clinical Metadata**|.json, .xml 42 +* Retrieved data is **normalized** and converted to standard formats (.csv, .json). 43 +* Data from **multiple sources** is harmonized to ensure consistency for AI processing. 44 44 ))) 45 - *(((46 -** MandatoryFieldsfor Integration**:45 +1. ((( 46 +**Security & Compliance:** 47 47 48 -* Subject ID: Unique patient identifier 49 -* Diagnosis: Standardized disease classification 50 -* Biomarkers: CSF, plasma, or imaging biomarkers 51 -* Genetic Data: Whole-genome or exome sequencing 52 -* Neuroimaging Metadata: MRI/PET acquisition parameters 48 +* All data access is **logged and monitored**. 49 +* Data remains on **MIP servers** using **federated learning techniques** when possible. 50 +* Access is granted only after signing a **Data Usage Agreement (DUA)**. 53 53 ))) 54 -))) 55 -1. ((( 56 -**Upload Data to Neurodiagnoses** 57 57 58 -* ((( 59 -**Option 1: Upload to EBRAINS Bucket** 53 +== Implementation Steps == 60 60 61 -* Location: EBRAINS Neurodiagnoses Bucket 62 -* Ensure correct metadata tagging before submission. 55 + 56 +1. Clone the repository. 57 +1. Configure your **EBRAINS API credentials** in mip_integration.py. 58 +1. Run the script to **download and harmonize clinical data**. 59 +1. Process the data for **AI model training**. 60 + 61 +For more detailed instructions, please refer to the **[[MIP Documentation>>url:https://mip.ebrains.eu/]]**. 62 + 63 +---- 64 + 65 += Data Processing & Integration with Clinica.Run = 66 + 67 + 68 +== Overview == 69 + 70 + 71 +Neurodiagnoses now supports **Clinica.Run**, an open-source neuroimaging platform designed for **multimodal data processing and reproducible neuroscience workflows**. 72 + 73 +== How It Works == 74 + 75 + 76 +1. ((( 77 +**Neuroimaging Preprocessing:** 78 + 79 +* MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines**. 80 +* Supports **longitudinal and cross-sectional analyses**. 63 63 ))) 64 - *(((65 -** Option 2: ContributeviaGitHub Repository**82 +1. ((( 83 +**Automated Biomarker Extraction:** 66 66 67 -* Location: GitHub Data Repository 68 -* Create a new folder under /data/ and include a dataset description. 69 -* For large datasets, contact project administrators before uploading. 85 +* Standardized extraction of **volumetric, metabolic, and functional biomarkers**. 86 +* Integration with machine learning models in Neurodiagnoses. 70 70 ))) 71 -))) 72 72 1. ((( 73 -** IntegrateData intoAIModels**89 +**Data Security & Compliance:** 74 74 75 -* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 76 -* Standardize neuroimaging and biomarker formats using harmonization tools. 77 -* Utilize machine learning models to handle missing data and feature extraction. 78 -* Train AI models with newly integrated patient cohorts. 79 - 80 -**Reference**: See docs/data_processing.md for detailed instructions. 91 +* Clinica.Run operates in **compliance with GDPR and HIPAA**. 92 +* Neuroimaging data remains **within the original storage environment**. 81 81 ))) 82 82 83 - **AI-Driven Biomarker Categorization**95 +== Implementation Steps == 84 84 85 -Neurodiagnoses employs advanced AI models for biomarker classification: 86 86 87 - |=**ModelType**|=**Application**88 - |**GraphNeural Networks (GNNs)**|Identify sharedbiomarkerpathways across diseases89 - |**ContrastiveLearning**|Distinguishoverlappingvs. uniquebiomarkers90 - |**MultimodalTransformerModels**|Integrateimaging,omics, andclinicaldata98 +1. Install **Clinica.Run** dependencies. 99 +1. Configure your **Clinica.Run pipeline** in clinica_run_config.json. 100 +1. Run the pipeline for **preprocessing and biomarker extraction**. 101 +1. Use processed neuroimaging data for **AI-driven diagnostics** in Neurodiagnoses. 91 91 92 - **Collaboration& Partnerships**103 +For further information, refer to **[[Clinica.Run Documentation>>url:https://clinica.run/]]**. 93 93 94 - Neurodiagnosesactivelyseekspartnerships with data providers to:105 +==== ==== 95 95 96 -* Enable API-based data integration for real-time processing. 97 -* Co-develop harmonized AI-ready datasets with standardized annotations. 98 -* Secure funding opportunities through joint grant applications. 107 +==== **Data Sources** ==== 99 99 100 - **InterestedPartnering?**109 +[[List of potential sources of databases>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 101 101 102 - If you represent a research consortiumor databaseprovider, reachouttoexploredata-sharing agreements.111 +**Biomedical Ontologies & Databases:** 103 103 104 -**Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 113 +* **Human Phenotype Ontology (HPO)** for symptom annotation. 114 +* **Gene Ontology (GO)** for molecular and cellular processes. 105 105 106 - 116 +**Dimensionality Reduction and Interpretability:** 117 + 118 +* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 119 +* **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 120 + 121 +**Neuroimaging & EEG/MEG Data:** 122 + 123 +* **MRI volumetric measures** for brain atrophy tracking. 124 +* **EEG functional connectivity patterns** (AI-Mind). 125 + 126 +**Clinical & Biomarker Data:** 127 + 128 +* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 129 +* **Sleep monitoring and actigraphy data** (ADIS). 130 + 131 +**Federated Learning Integration:** 132 + 133 +* **Secure multi-center data harmonization** (PROMINENT). 134 + 135 +---- 136 + 137 +==== **Annotation System for Multi-Modal Data** ==== 138 + 139 +To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will: 140 + 141 +* **Assign standardized metadata tags** to diagnostic features. 142 +* **Provide contextual explanations** for AI-based classifications. 143 +* **Track temporal disease progression annotations** to identify long-term trends. 144 + 145 +---- 146 + 147 +=== **2. AI-Based Analysis** === 148 + 149 +==== **Machine Learning & Deep Learning Models** ==== 150 + 151 +**Risk Prediction Models:** 152 + 153 +* **LETHE’s cognitive risk prediction model** integrated into the annotation framework. 154 + 155 +**Biomarker Classification & Probabilistic Imputation:** 156 + 157 +* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. 158 + 159 +**Neuroimaging Feature Extraction:** 160 + 161 +* **MRI & EEG data** annotated with **neuroanatomical feature labels**. 162 + 163 +==== **AI-Powered Annotation System** ==== 164 + 165 +* Uses **SHAP-based interpretability tools** to explain model decisions. 166 +* Generates **automated clinical annotations** in structured reports. 167 +* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). 168 + 169 +---- 170 + 171 +=== **3. Diagnostic Framework & Clinical Decision Support** === 172 + 173 +==== **Tridimensional Diagnostic Axes** ==== 174 + 175 +**Axis 1: Etiology (Pathogenic Mechanisms)** 176 + 177 +* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 178 +* **AI-assisted annotation** provides **causal interpretations** for clinical use. 179 + 180 +**Axis 2: Molecular Markers & Biomarkers** 181 + 182 +* **Integration of CSF, blood, and neuroimaging biomarkers**. 183 +* **Structured annotation** highlights **biological pathways linked to diagnosis**. 184 + 185 +**Axis 3: Neuroanatomoclinical Correlations** 186 + 187 +* **MRI and EEG data** provide anatomical and functional insights. 188 +* **AI-generated progression maps** annotate **brain structure-function relationships**. 189 + 190 +---- 191 + 192 +=== **4. Computational Workflow & Annotation Pipelines** === 193 + 194 +==== **Data Processing Steps** ==== 195 + 196 +**Data Ingestion:** 197 + 198 +* **Harmonized datasets** stored in **EBRAINS Bucket**. 199 +* **Preprocessing pipelines** clean and standardize data. 200 + 201 +**Feature Engineering:** 202 + 203 +* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. 204 + 205 +**AI-Generated Annotations:** 206 + 207 +* **Automated tagging** of diagnostic features in **structured reports**. 208 +* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 209 + 210 +**Clinical Decision Support Integration:** 211 + 212 +* **AI-annotated findings** fed into **interactive dashboards**. 213 +* **Clinicians can adjust, validate, and modify annotations**. 214 + 215 +---- 216 + 217 +=== **5. Validation & Real-World Testing** === 218 + 219 +==== **Prospective Clinical Study** ==== 220 + 221 +* **Multi-center validation** of AI-based **annotations & risk stratifications**. 222 +* **Benchmarking against clinician-based diagnoses**. 223 +* **Real-world testing** of AI-powered **structured reporting**. 224 + 225 +==== **Quality Assurance & Explainability** ==== 226 + 227 +* **Annotations linked to structured knowledge graphs** for improved transparency. 228 +* **Interactive annotation editor** allows clinicians to validate AI outputs. 229 + 230 +---- 231 + 232 +=== **6. Collaborative Development** === 233 + 234 +The project is **open to contributions** from **researchers, clinicians, and developers**. 235 + 236 +**Key tools include:** 237 + 238 +* **Jupyter Notebooks**: For data analysis and pipeline development. 239 +** Example: **probabilistic imputation** 240 +* **Wiki Pages**: For documenting methods and results. 241 +* **Drive and Bucket**: For sharing code, data, and outputs. 242 +* **Collaboration with related projects**: 243 +** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 244 + 245 +---- 246 + 247 +=== **7. Tools and Technologies** === 248 + 249 +==== **Programming Languages:** ==== 250 + 251 +* **Python** for AI and data processing. 252 + 253 +==== **Frameworks:** ==== 254 + 255 +* **TensorFlow** and **PyTorch** for machine learning. 256 +* **Flask** or **FastAPI** for backend services. 257 + 258 +==== **Visualization:** ==== 259 + 260 +* **Plotly** and **Matplotlib** for interactive and static visualizations. 261 + 262 +==== **EBRAINS Services:** ==== 263 + 264 +* **Collaboratory Lab** for running Notebooks. 265 +* **Buckets** for storing large datasets. 266 + 267 +---- 268 + 269 +=== **Why This Matters** === 270 + 271 +* The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful. 272 +* It enables real-time tracking of disease progression across the three diagnostic axes. 273 +* It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.
- workflow neurodiagnoses.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.manuelmenendez - Size
-
... ... @@ -1,1 +1,0 @@ 1 -157.5 KB - Content