Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 22.1
edited by manuelmenendez
on 2025/02/15 12:55
on 2025/02/15 12:55
Change comment:
There is no comment for this version
To version 17.1
edited by manuelmenendez
on 2025/02/09 13:01
on 2025/02/09 13:01
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,106 +1,154 @@ 1 - **NeurodiagnosesAI**is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. Building upon the Florey Dementia Index (FDI) methodology, it nowencompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the**GeneralizedNeuro Biomarker Ontology Categorization (Neuromarker)**, which standardizes biomarker classification across all neurodegenerative diseases, facilitating cross-disease AI training.1 +== **Overview** == 2 2 3 - **Neuromarker:GeneralizedBiomarkerOntology**3 +Neurodiagnoses develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility.** 4 4 5 -Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration. 5 +This methodology integrates **multi-modal data**, including: 6 +**Genetic data** (whole-genome sequencing, polygenic risk scores). 7 +**Neuroimaging** (MRI, PET, EEG, MEG). 8 +**Neurophysiological data** (EEG-based biomarkers, sleep actigraphy). 9 +**CSF & Blood Biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 6 6 7 -** CoreBiomarkerCategories**11 +By applying **machine learning models**, Neurodiagnoses generates **structured, explainable diagnostic outputs** to assist **clinical decision-making** and **biomarker-driven patient stratification.** 8 8 9 - Within the Neurodiagnoses AI framework, biomarkers are categorized as follows:13 +---- 10 10 11 -|=**Category**|=**Description** 12 -|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 13 -|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 14 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL 15 -|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 16 -|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 17 -|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 18 -|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 19 -|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 15 +== **Data Integration & External Databases** == 20 20 21 -** IntegratingExternal Databases intoNeurodiagnoses**17 +=== **How to Use External Databases in Neurodiagnoses** === 22 22 23 - To enhance diagnostic precision,NeurodiagnosesAIincorporates data from multiple biomedical and neurological research databases. Researchers canintegrate externaldatasetsby followingthesesteps:19 +Neurodiagnoses integrates data from multiple **biomedical and neurological research databases**. Researchers can follow these steps to **access, prepare, and integrate** data into the Neurodiagnoses framework. 24 24 25 - 1.(((26 -**Re gisterforAccess**21 +**Potential Data Sources** 22 +**Reference:** [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 27 27 28 -* Each external database requires individual registration and access approval. 29 -* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses. 30 -* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data. 31 -))) 32 -1. ((( 33 -**Download & Prepare Data** 24 +=== **Register for Access** === 34 34 35 - *Downloaddatasetswhileadhering todatabaseusagepolicies.36 -* (((37 -Ensure filesmeetNeurodiagnosesformatrequirements:26 +Each **external database** requires **individual registration** and approval. 27 +✔️ Follow the official **data access guidelines** of each provider. 28 +✔️ Ensure compliance with **ethical approvals** and **data-sharing agreements (DUAs).** 38 38 39 -|=**Data Type**|=**Accepted Formats** 40 -|**Tabular Data**|.csv, .tsv 41 -|**Neuroimaging**|.nii, .dcm 42 -|**Genomic Data**|.fasta, .vcf 43 -|**Clinical Metadata**|.json, .xml 44 -))) 45 -* ((( 46 -**Mandatory Fields for Integration**: 30 +=== **Download & Prepare Data** === 47 47 48 -* Subject ID: Unique patient identifier 49 -* Diagnosis: Standardized disease classification 50 -* Biomarkers: CSF, plasma, or imaging biomarkers 51 -* Genetic Data: Whole-genome or exome sequencing 52 -* Neuroimaging Metadata: MRI/PET acquisition parameters 53 -))) 54 -))) 55 -1. ((( 56 -**Upload Data to Neurodiagnoses** 32 +Once access is granted, download datasets **following compliance guidelines** and **format requirements** for integration. 57 57 58 -* ((( 59 -**Option 1: Upload to EBRAINS Bucket** 34 +**Supported File Formats** 60 60 61 -* Location: EBRAINS Neurodiagnoses Bucket 62 -* Ensure correct metadata tagging before submission. 63 -))) 64 -* ((( 65 -**Option 2: Contribute via GitHub Repository** 36 +* **Tabular Data**: .csv, .tsv 37 +* **Neuroimaging Data**: .nii, .dcm 38 +* **Genomic Data**: .fasta, .vcf 39 +* **Clinical Metadata**: .json, .xml 66 66 67 -* Location: GitHub Data Repository 68 -* Create a new folder under /data/ and include a dataset description. 69 -* For large datasets, contact project administrators before uploading. 70 -))) 71 -))) 72 -1. ((( 73 -**Integrate Data into AI Models** 41 +**Mandatory Fields for Integration** 74 74 75 -* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 76 -* Standardize neuroimaging and biomarker formats using harmonization tools. 77 -* Utilize machine learning models to handle missing data and feature extraction. 78 -* Train AI models with newly integrated patient cohorts. 43 +|=**Field Name**|=**Description** 44 +|**Subject ID**|Unique patient identifier 45 +|**Diagnosis**|Standardized disease classification 46 +|**Biomarkers**|CSF, plasma, or imaging biomarkers 47 +|**Genetic Data**|Whole-genome or exome sequencing 48 +|**Neuroimaging Metadata**|MRI/PET acquisition parameters 79 79 80 -**Reference**: See docs/data_processing.md for detailed instructions. 81 -))) 50 +=== **Upload Data to Neurodiagnoses** === 82 82 83 -**AI-Driven Biomarker Categorization** 52 +**Option 1:** Upload to **EBRAINS Bucket** → [[Neurodiagnoses Data Storage>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]] 53 +**Option 2:** Contribute via **GitHub Repository** → [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]] 84 84 85 - NeurodiagnosesemploysadvancedAI modelsfor biomarkerclassification:55 +**For large datasets, please contact project administrators before uploading.** 86 86 87 -|=**Model Type**|=**Application** 88 -|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 89 -|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 90 -|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 57 +=== **Integrate Data into AI Models** === 91 91 92 -**Collaboration & Partnerships** 59 +Use **Jupyter Notebooks** on EBRAINS for **data preprocessing.** 60 +Standardize data using **harmonization tools.** 61 +Train AI models with **newly integrated datasets.** 93 93 94 - Neurodiagnosesactivelyseekspartnershipswithta providers:63 +**Reference:** [[Data Processing Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]] 95 95 96 -* Enable API-based data integration for real-time processing. 97 -* Co-develop harmonized AI-ready datasets with standardized annotations. 98 -* Secure funding opportunities through joint grant applications. 65 +---- 99 99 100 -**I nterested inPartnering?**67 +== **AI-Powered Annotation & Machine Learning Models** == 101 101 102 - If youepresentaresearchconsortiumordatabaseprovider,reach out toexploredata-sharing agreements.69 +Neurodiagnoses applies **advanced machine learning models** to classify CNS diseases, extract features from **biomarkers and neuroimaging**, and provide **AI-powered annotation.** 103 103 104 -** Contact**:[[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]71 +=== **AI Model Categories** === 105 105 106 - 73 +|=**Model Type**|=**Function**|=**Example Algorithms** 74 +|**Probabilistic Diagnosis**|Assigns probability scores to multiple CNS disorders.|Random Forest, XGBoost, Bayesian Networks 75 +|**Tridimensional Diagnosis**|Classifies disorders based on Etiology, Biomarkers, and Neuroanatomical Correlations.|CNNs, Transformers, Autoencoders 76 +|**Biomarker Prediction**|Predicts missing biomarker values using regression.|KNN Imputation, Bayesian Estimation 77 +|**Neuroimaging Feature Extraction**|Extracts patterns from MRI, PET, EEG.|CNNs, Graph Neural Networks 78 +|**Clinical Decision Support**|Generates AI-driven diagnostic reports.|SHAP Explainability Tools 79 + 80 +**Reference:** [[AI Model Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/models.md]] 81 + 82 +---- 83 + 84 +== **Clinical Decision Support & Tridimensional Diagnostic Framework** == 85 + 86 +Neurodiagnoses generates **structured AI reports** for clinicians, combining: 87 + 88 +**Probabilistic Diagnosis:** AI-generated ranking of potential diagnoses. 89 +**Tridimensional Classification:** Standardized diagnostic reports based on: 90 + 91 +1. **Axis 1:** **Etiology** → Genetic, Autoimmune, Prion, Toxic, Vascular. 92 +1. **Axis 2:** **Molecular Markers** → CSF, Neuroinflammation, EEG biomarkers. 93 +1. **Axis 3:** **Neuroanatomoclinical Correlations** → MRI atrophy, PET. 94 + 95 +**Reference:** [[Tridimensional Classification Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/classification.md]] 96 + 97 +---- 98 + 99 +== **Data Security, Compliance & Federated Learning** == 100 + 101 +✔ **Privacy-Preserving AI**: Implements **Federated Learning**, ensuring that patient data **never leaves** local institutions. 102 +✔ **Secure Data Access**: Data remains **stored in EBRAINS MIP servers** using **differential privacy techniques.** 103 +✔ **Ethical & GDPR Compliance**: Data-sharing agreements **must be signed** before use. 104 + 105 +**Reference:** [[Data Protection & Federated Learning>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/security.md]] 106 + 107 +---- 108 + 109 +== **Data Processing & Integration with Clinica.Run** == 110 + 111 +Neurodiagnoses now supports **Clinica.Run**, an **open-source neuroimaging platform** for **multimodal data processing.** 112 + 113 +=== **How It Works** === 114 + 115 +✔ **Neuroimaging Preprocessing**: MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines.** 116 +✔ **Automated Biomarker Extraction**: Extracts volumetric, metabolic, and functional biomarkers. 117 +✔ **Data Security & Compliance**: Clinica.Run is **GDPR & HIPAA-compliant.** 118 + 119 +=== **Implementation Steps** === 120 + 121 +1. Install **Clinica.Run** dependencies. 122 +1. Configure **Clinica.Run pipeline** in clinica_run_config.json. 123 +1. Run **biomarker extraction pipelines** for AI-based diagnostics. 124 + 125 +**Reference:** [[Clinica.Run Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/clinica_run.md]] 126 + 127 +---- 128 + 129 +== **Collaborative Development & Research** == 130 + 131 +**We Use GitHub to Develop AI Models & Store Research Data** 132 + 133 +* **GitHub Repository:** AI model training scripts. 134 +* **GitHub Issues:** Tracks ongoing research questions. 135 +* **GitHub Wiki:** Project documentation & user guides. 136 + 137 +**We Use EBRAINS for Data & Collaboration** 138 + 139 +* **EBRAINS Buckets:** Large-scale neuroimaging and biomarker storage. 140 +* **EBRAINS Jupyter Notebooks:** Cloud-based AI model execution. 141 +* **EBRAINS Wiki:** Research documentation and updates. 142 + 143 +**Join the Project Forum:** [[GitHub Discussions>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]] 144 + 145 +---- 146 + 147 +**For Additional Documentation:** 148 + 149 +* **GitHub Repository:** [[Neurodiagnoses AI Models>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]] 150 +* **EBRAINS Wiki:** [[Neurodiagnoses Research Collaboration>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]] 151 + 152 +---- 153 + 154 +**Neurodiagnoses is Open for Contributions – Join Us Today!**
- workflow neurodiagnoses.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.manuelmenendez - Size
-
... ... @@ -1,1 +1,0 @@ 1 -157.5 KB - Content