Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 22.1
edited by manuelmenendez
on 2025/02/15 12:55
Change comment: There is no comment for this version
To version 17.1
edited by manuelmenendez
on 2025/02/09 13:01
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,106 +1,154 @@
1 -**Neurodiagnoses AI** is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. Building upon the Florey Dementia Index (FDI) methodology, it now encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)**, which standardizes biomarker classification across all neurodegenerative diseases, facilitating cross-disease AI training.
1 +== **Overview** ==
2 2  
3 -**Neuromarker: Generalized Biomarker Ontology**
3 +Neurodiagnoses develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility.**
4 4  
5 -Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration.
5 +This methodology integrates **multi-modal data**, including:
6 +**Genetic data** (whole-genome sequencing, polygenic risk scores).
7 +**Neuroimaging** (MRI, PET, EEG, MEG).
8 +**Neurophysiological data** (EEG-based biomarkers, sleep actigraphy).
9 +**CSF & Blood Biomarkers** (Amyloid-beta, Tau, Neurofilament Light).
6 6  
7 -**Core Biomarker Categories**
11 +By applying **machine learning models**, Neurodiagnoses generates **structured, explainable diagnostic outputs** to assist **clinical decision-making** and **biomarker-driven patient stratification.**
8 8  
9 -Within the Neurodiagnoses AI framework, biomarkers are categorized as follows:
13 +----
10 10  
11 -|=**Category**|=**Description**
12 -|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic)
13 -|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein)
14 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL
15 -|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers
16 -|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers
17 -|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS)
18 -|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores
19 -|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities
15 +== **Data Integration & External Databases** ==
20 20  
21 -**Integrating External Databases into Neurodiagnoses**
17 +=== **How to Use External Databases in Neurodiagnoses** ===
22 22  
23 -To enhance diagnostic precision, Neurodiagnoses AI incorporates data from multiple biomedical and neurological research databases. Researchers can integrate external datasets by following these steps:
19 +Neurodiagnoses integrates data from multiple **biomedical and neurological research databases**. Researchers can follow these steps to **access, prepare, and integrate** data into the Neurodiagnoses framework.
24 24  
25 -1. (((
26 -**Register for Access**
21 +**Potential Data Sources**
22 +**Reference:** [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]]
27 27  
28 -* Each external database requires individual registration and access approval.
29 -* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses.
30 -* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data.
31 -)))
32 -1. (((
33 -**Download & Prepare Data**
24 +=== **Register for Access** ===
34 34  
35 -* Download datasets while adhering to database usage policies.
36 -* (((
37 -Ensure files meet Neurodiagnoses format requirements:
26 +Each **external database** requires **individual registration** and approval.
27 +✔️ Follow the official **data access guidelines** of each provider.
28 +✔️ Ensure compliance with **ethical approvals** and **data-sharing agreements (DUAs).**
38 38  
39 -|=**Data Type**|=**Accepted Formats**
40 -|**Tabular Data**|.csv, .tsv
41 -|**Neuroimaging**|.nii, .dcm
42 -|**Genomic Data**|.fasta, .vcf
43 -|**Clinical Metadata**|.json, .xml
44 -)))
45 -* (((
46 -**Mandatory Fields for Integration**:
30 +=== **Download & Prepare Data** ===
47 47  
48 -* Subject ID: Unique patient identifier
49 -* Diagnosis: Standardized disease classification
50 -* Biomarkers: CSF, plasma, or imaging biomarkers
51 -* Genetic Data: Whole-genome or exome sequencing
52 -* Neuroimaging Metadata: MRI/PET acquisition parameters
53 -)))
54 -)))
55 -1. (((
56 -**Upload Data to Neurodiagnoses**
32 +Once access is granted, download datasets **following compliance guidelines** and **format requirements** for integration.
57 57  
58 -* (((
59 -**Option 1: Upload to EBRAINS Bucket**
34 +**Supported File Formats**
60 60  
61 -* Location: EBRAINS Neurodiagnoses Bucket
62 -* Ensure correct metadata tagging before submission.
63 -)))
64 -* (((
65 -**Option 2: Contribute via GitHub Repository**
36 +* **Tabular Data**: .csv, .tsv
37 +* **Neuroimaging Data**: .nii, .dcm
38 +* **Genomic Data**: .fasta, .vcf
39 +* **Clinical Metadata**: .json, .xml
66 66  
67 -* Location: GitHub Data Repository
68 -* Create a new folder under /data/ and include a dataset description.
69 -* For large datasets, contact project administrators before uploading.
70 -)))
71 -)))
72 -1. (((
73 -**Integrate Data into AI Models**
41 +**Mandatory Fields for Integration**
74 74  
75 -* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts.
76 -* Standardize neuroimaging and biomarker formats using harmonization tools.
77 -* Utilize machine learning models to handle missing data and feature extraction.
78 -* Train AI models with newly integrated patient cohorts.
43 +|=**Field Name**|=**Description**
44 +|**Subject ID**|Unique patient identifier
45 +|**Diagnosis**|Standardized disease classification
46 +|**Biomarkers**|CSF, plasma, or imaging biomarkers
47 +|**Genetic Data**|Whole-genome or exome sequencing
48 +|**Neuroimaging Metadata**|MRI/PET acquisition parameters
79 79  
80 -**Reference**: See docs/data_processing.md for detailed instructions.
81 -)))
50 +=== **Upload Data to Neurodiagnoses** ===
82 82  
83 -**AI-Driven Biomarker Categorization**
52 +**Option 1:** Upload to **EBRAINS Bucket** → [[Neurodiagnoses Data Storage>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]]
53 +**Option 2:** Contribute via **GitHub Repository** → [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]]
84 84  
85 -Neurodiagnoses employs advanced AI models for biomarker classification:
55 +**For large datasets, please contact project administrators before uploading.**
86 86  
87 -|=**Model Type**|=**Application**
88 -|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases
89 -|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers
90 -|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data
57 +=== **Integrate Data into AI Models** ===
91 91  
92 -**Collaboration & Partnerships**
59 +Use **Jupyter Notebooks** on EBRAINS for **data preprocessing.**
60 +Standardize data using **harmonization tools.**
61 +Train AI models with **newly integrated datasets.**
93 93  
94 -Neurodiagnoses actively seeks partnerships with data providers to:
63 +**Reference:** [[Data Processing Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]]
95 95  
96 -* Enable API-based data integration for real-time processing.
97 -* Co-develop harmonized AI-ready datasets with standardized annotations.
98 -* Secure funding opportunities through joint grant applications.
65 +----
99 99  
100 -**Interested in Partnering?**
67 +== **AI-Powered Annotation & Machine Learning Models** ==
101 101  
102 -If you represent a research consortium or database provider, reach out to explore data-sharing agreements.
69 +Neurodiagnoses applies **advanced machine learning models** to classify CNS diseases, extract features from **biomarkers and neuroimaging**, and provide **AI-powered annotation.**
103 103  
104 -**Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]
71 +=== **AI Model Categories** ===
105 105  
106 -
73 +|=**Model Type**|=**Function**|=**Example Algorithms**
74 +|**Probabilistic Diagnosis**|Assigns probability scores to multiple CNS disorders.|Random Forest, XGBoost, Bayesian Networks
75 +|**Tridimensional Diagnosis**|Classifies disorders based on Etiology, Biomarkers, and Neuroanatomical Correlations.|CNNs, Transformers, Autoencoders
76 +|**Biomarker Prediction**|Predicts missing biomarker values using regression.|KNN Imputation, Bayesian Estimation
77 +|**Neuroimaging Feature Extraction**|Extracts patterns from MRI, PET, EEG.|CNNs, Graph Neural Networks
78 +|**Clinical Decision Support**|Generates AI-driven diagnostic reports.|SHAP Explainability Tools
79 +
80 +**Reference:** [[AI Model Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/models.md]]
81 +
82 +----
83 +
84 +== **Clinical Decision Support & Tridimensional Diagnostic Framework** ==
85 +
86 +Neurodiagnoses generates **structured AI reports** for clinicians, combining:
87 +
88 +**Probabilistic Diagnosis:** AI-generated ranking of potential diagnoses.
89 +**Tridimensional Classification:** Standardized diagnostic reports based on:
90 +
91 +1. **Axis 1:** **Etiology** → Genetic, Autoimmune, Prion, Toxic, Vascular.
92 +1. **Axis 2:** **Molecular Markers** → CSF, Neuroinflammation, EEG biomarkers.
93 +1. **Axis 3:** **Neuroanatomoclinical Correlations** → MRI atrophy, PET.
94 +
95 +**Reference:** [[Tridimensional Classification Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/classification.md]]
96 +
97 +----
98 +
99 +== **Data Security, Compliance & Federated Learning** ==
100 +
101 +✔ **Privacy-Preserving AI**: Implements **Federated Learning**, ensuring that patient data **never leaves** local institutions.
102 +✔ **Secure Data Access**: Data remains **stored in EBRAINS MIP servers** using **differential privacy techniques.**
103 +✔ **Ethical & GDPR Compliance**: Data-sharing agreements **must be signed** before use.
104 +
105 +**Reference:** [[Data Protection & Federated Learning>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/security.md]]
106 +
107 +----
108 +
109 +== **Data Processing & Integration with Clinica.Run** ==
110 +
111 +Neurodiagnoses now supports **Clinica.Run**, an **open-source neuroimaging platform** for **multimodal data processing.**
112 +
113 +=== **How It Works** ===
114 +
115 +✔ **Neuroimaging Preprocessing**: MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines.**
116 +✔ **Automated Biomarker Extraction**: Extracts volumetric, metabolic, and functional biomarkers.
117 +✔ **Data Security & Compliance**: Clinica.Run is **GDPR & HIPAA-compliant.**
118 +
119 +=== **Implementation Steps** ===
120 +
121 +1. Install **Clinica.Run** dependencies.
122 +1. Configure **Clinica.Run pipeline** in clinica_run_config.json.
123 +1. Run **biomarker extraction pipelines** for AI-based diagnostics.
124 +
125 +**Reference:** [[Clinica.Run Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/clinica_run.md]]
126 +
127 +----
128 +
129 +== **Collaborative Development & Research** ==
130 +
131 +**We Use GitHub to Develop AI Models & Store Research Data**
132 +
133 +* **GitHub Repository:** AI model training scripts.
134 +* **GitHub Issues:** Tracks ongoing research questions.
135 +* **GitHub Wiki:** Project documentation & user guides.
136 +
137 +**We Use EBRAINS for Data & Collaboration**
138 +
139 +* **EBRAINS Buckets:** Large-scale neuroimaging and biomarker storage.
140 +* **EBRAINS Jupyter Notebooks:** Cloud-based AI model execution.
141 +* **EBRAINS Wiki:** Research documentation and updates.
142 +
143 +**Join the Project Forum:** [[GitHub Discussions>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]
144 +
145 +----
146 +
147 +**For Additional Documentation:**
148 +
149 +* **GitHub Repository:** [[Neurodiagnoses AI Models>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]]
150 +* **EBRAINS Wiki:** [[Neurodiagnoses Research Collaboration>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]]
151 +
152 +----
153 +
154 +**Neurodiagnoses is Open for Contributions – Join Us Today!**
workflow neurodiagnoses.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.manuelmenendez
Size
... ... @@ -1,1 +1,0 @@
1 -157.5 KB
Content