Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 23.1
edited by manuelmenendez
on 2025/02/15 12:55
Change comment: There is no comment for this version
To version 15.1
edited by manuelmenendez
on 2025/02/09 10:08
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,106 +1,268 @@
1 -**Neurodiagnoses AI** is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. Building upon the Florey Dementia Index (FDI) methodology, it now encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)**, which standardizes biomarker classification across all neurodegenerative diseases, facilitating cross-disease AI training.
1 +== **Overview** ==
2 2  
3 -**Neuromarker: Generalized Biomarker Ontology**
3 +This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**.
4 4  
5 -Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration.
5 +== **Workflow** ==
6 6  
7 -**Core Biomarker Categories**
7 +1. (((
8 +**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]**
8 8  
9 -Within the Neurodiagnoses AI framework, biomarkers are categorized as follows:
10 +* Create a **GitHub repository** for AI scripts and models.
11 +* Use **GitHub Projects** to manage research milestones.
12 +)))
13 +1. (((
14 +**We Use EBRAINS for Data & Collaboration**
10 10  
11 -|=**Category**|=**Description**
12 -|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic)
13 -|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein)
14 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL, autoantiboides
15 -|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers
16 -|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers
17 -|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS)
18 -|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores
19 -|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities
16 +* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**.
17 +* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models.
18 +* Use **EBRAINS Wiki** for structured documentation and research discussion.
19 +)))
20 20  
21 -**Integrating External Databases into Neurodiagnoses**
21 +----
22 22  
23 -To enhance diagnostic precision, Neurodiagnoses AI incorporates data from multiple biomedical and neurological research databases. Researchers can integrate external datasets by following these steps:
23 +== **1. Data Integration** ==
24 24  
25 +=== **EBRAINS Medical Informatics Platform (MIP)**. ===
26 +
27 +Neurodiagnoses integrates clinical data via the **EBRAINS Medical Informatics Platform (MIP)**. MIP federates decentralized clinical data, allowing Neurodiagnoses to securely access and process sensitive information for AI-based diagnostics.
28 +
29 +==== How It Works ====
30 +
31 +
25 25  1. (((
26 -**Register for Access**
33 +**Authentication & API Access:**
27 27  
28 -* Each external database requires individual registration and access approval.
29 -* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses.
30 -* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data.
35 +* Users must have an **EBRAINS account**.
36 +* Neurodiagnoses uses **secure API endpoints** to fetch clinical data (e.g., from the **Federation for Dementia**).
31 31  )))
32 32  1. (((
33 -**Download & Prepare Data**
39 +**Data Mapping & Harmonization:**
34 34  
35 -* Download datasets while adhering to database usage policies.
36 -* (((
37 -Ensure files meet Neurodiagnoses format requirements:
38 -
39 -|=**Data Type**|=**Accepted Formats**
40 -|**Tabular Data**|.csv, .tsv
41 -|**Neuroimaging**|.nii, .dcm
42 -|**Genomic Data**|.fasta, .vcf
43 -|**Clinical Metadata**|.json, .xml
41 +* Retrieved data is **normalized** and converted to standard formats (.csv, .json).
42 +* Data from **multiple sources** is harmonized to ensure consistency for AI processing.
44 44  )))
45 -* (((
46 -**Mandatory Fields for Integration**:
44 +1. (((
45 +**Security & Compliance:**
47 47  
48 -* Subject ID: Unique patient identifier
49 -* Diagnosis: Standardized disease classification
50 -* Biomarkers: CSF, plasma, or imaging biomarkers
51 -* Genetic Data: Whole-genome or exome sequencing
52 -* Neuroimaging Metadata: MRI/PET acquisition parameters
47 +* All data access is **logged and monitored**.
48 +* Data remains on **MIP servers** using **federated learning techniques** when possible.
49 +* Access is granted only after signing a **Data Usage Agreement (DUA)**.
53 53  )))
54 -)))
55 -1. (((
56 -**Upload Data to Neurodiagnoses**
57 57  
58 -* (((
59 -**Option 1: Upload to EBRAINS Bucket**
52 +==== Implementation Steps ====
60 60  
61 -* Location: EBRAINS Neurodiagnoses Bucket
62 -* Ensure correct metadata tagging before submission.
54 +
55 +1. Clone the repository.
56 +1. Configure your **EBRAINS API credentials** in mip_integration.py.
57 +1. Run the script to **download and harmonize clinical data**.
58 +1. Process the data for **AI model training**.
59 +
60 +For more detailed instructions, please refer to the **[[MIP Documentation>>url:https://mip.ebrains.eu/]]**.
61 +
62 +----
63 +
64 +=== Data Processing & Integration with Clinica.Run ===
65 +
66 +Neurodiagnoses now supports **Clinica.Run**, an open-source neuroimaging platform designed for **multimodal data processing and reproducible neuroscience workflows**.
67 +
68 +==== How It Works ====
69 +
70 +
71 +1. (((
72 +**Neuroimaging Preprocessing:**
73 +
74 +* MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines**.
75 +* Supports **longitudinal and cross-sectional analyses**.
63 63  )))
64 -* (((
65 -**Option 2: Contribute via GitHub Repository**
77 +1. (((
78 +**Automated Biomarker Extraction:**
66 66  
67 -* Location: GitHub Data Repository
68 -* Create a new folder under /data/ and include a dataset description.
69 -* For large datasets, contact project administrators before uploading.
80 +* Standardized extraction of **volumetric, metabolic, and functional biomarkers**.
81 +* Integration with machine learning models in Neurodiagnoses.
70 70  )))
71 -)))
72 72  1. (((
73 -**Integrate Data into AI Models**
84 +**Data Security & Compliance:**
74 74  
75 -* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts.
76 -* Standardize neuroimaging and biomarker formats using harmonization tools.
77 -* Utilize machine learning models to handle missing data and feature extraction.
78 -* Train AI models with newly integrated patient cohorts.
79 -
80 -**Reference**: See docs/data_processing.md for detailed instructions.
86 +* Clinica.Run operates in **compliance with GDPR and HIPAA**.
87 +* Neuroimaging data remains **within the original storage environment**.
81 81  )))
82 82  
83 -**AI-Driven Biomarker Categorization**
90 +==== Implementation Steps ====
84 84  
85 -Neurodiagnoses employs advanced AI models for biomarker classification:
86 86  
87 -|=**Model Type**|=**Application**
88 -|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases
89 -|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers
90 -|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data
93 +1. Install **Clinica.Run** dependencies.
94 +1. Configure your **Clinica.Run pipeline** in clinica_run_config.json.
95 +1. Run the pipeline for **preprocessing and biomarker extraction**.
96 +1. Use processed neuroimaging data for **AI-driven diagnostics** in Neurodiagnoses.
91 91  
92 -**Collaboration & Partnerships**
98 +For further information, refer to **[[Clinica.Run Documentation>>url:https://clinica.run/]]**.
93 93  
94 -Neurodiagnoses actively seeks partnerships with data providers to:
100 +==== ====
95 95  
96 -* Enable API-based data integration for real-time processing.
97 -* Co-develop harmonized AI-ready datasets with standardized annotations.
98 -* Secure funding opportunities through joint grant applications.
102 +==== **Data Sources** ====
99 99  
100 -**Interested in Partnering?**
104 +[[List of potential sources of databases>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]]
101 101  
102 -If you represent a research consortium or database provider, reach out to explore data-sharing agreements.
106 +**Biomedical Ontologies & Databases:**
103 103  
104 -**Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]
108 +* **Human Phenotype Ontology (HPO)** for symptom annotation.
109 +* **Gene Ontology (GO)** for molecular and cellular processes.
105 105  
106 -
111 +**Dimensionality Reduction and Interpretability:**
112 +
113 +* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**.
114 +* **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts.
115 +
116 +**Neuroimaging & EEG/MEG Data:**
117 +
118 +* **MRI volumetric measures** for brain atrophy tracking.
119 +* **EEG functional connectivity patterns** (AI-Mind).
120 +
121 +**Clinical & Biomarker Data:**
122 +
123 +* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light).
124 +* **Sleep monitoring and actigraphy data** (ADIS).
125 +
126 +**Federated Learning Integration:**
127 +
128 +* **Secure multi-center data harmonization** (PROMINENT).
129 +
130 +----
131 +
132 +==== **Annotation System for Multi-Modal Data** ====
133 +
134 +To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will:
135 +
136 +* **Assign standardized metadata tags** to diagnostic features.
137 +* **Provide contextual explanations** for AI-based classifications.
138 +* **Track temporal disease progression annotations** to identify long-term trends.
139 +
140 +----
141 +
142 +== **2. AI-Based Analysis** ==
143 +
144 +==== **Machine Learning & Deep Learning Models** ====
145 +
146 +**Risk Prediction Models:**
147 +
148 +* **LETHE’s cognitive risk prediction model** integrated into the annotation framework.
149 +
150 +**Biomarker Classification & Probabilistic Imputation:**
151 +
152 +* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**.
153 +
154 +**Neuroimaging Feature Extraction:**
155 +
156 +* **MRI & EEG data** annotated with **neuroanatomical feature labels**.
157 +
158 +==== **AI-Powered Annotation System** ====
159 +
160 +* Uses **SHAP-based interpretability tools** to explain model decisions.
161 +* Generates **automated clinical annotations** in structured reports.
162 +* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**).
163 +
164 +----
165 +
166 +== **3. Diagnostic Framework & Clinical Decision Support** ==
167 +
168 +==== **Tridimensional Diagnostic Axes** ====
169 +
170 +**Axis 1: Etiology (Pathogenic Mechanisms)**
171 +
172 +* Classification based on **genetic markers, cellular pathways, and environmental risk factors**.
173 +* **AI-assisted annotation** provides **causal interpretations** for clinical use.
174 +
175 +**Axis 2: Molecular Markers & Biomarkers**
176 +
177 +* **Integration of CSF, blood, and neuroimaging biomarkers**.
178 +* **Structured annotation** highlights **biological pathways linked to diagnosis**.
179 +
180 +**Axis 3: Neuroanatomoclinical Correlations**
181 +
182 +* **MRI and EEG data** provide anatomical and functional insights.
183 +* **AI-generated progression maps** annotate **brain structure-function relationships**.
184 +
185 +----
186 +
187 +== **4. Computational Workflow & Annotation Pipelines** ==
188 +
189 +==== **Data Processing Steps** ====
190 +
191 +**Data Ingestion:**
192 +
193 +* **Harmonized datasets** stored in **EBRAINS Bucket**.
194 +* **Preprocessing pipelines** clean and standardize data.
195 +
196 +**Feature Engineering:**
197 +
198 +* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**.
199 +
200 +**AI-Generated Annotations:**
201 +
202 +* **Automated tagging** of diagnostic features in **structured reports**.
203 +* **Explainability modules (SHAP, LIME)** ensure transparency in predictions.
204 +
205 +**Clinical Decision Support Integration:**
206 +
207 +* **AI-annotated findings** fed into **interactive dashboards**.
208 +* **Clinicians can adjust, validate, and modify annotations**.
209 +
210 +----
211 +
212 +== **5. Validation & Real-World Testing** ==
213 +
214 +==== **Prospective Clinical Study** ====
215 +
216 +* **Multi-center validation** of AI-based **annotations & risk stratifications**.
217 +* **Benchmarking against clinician-based diagnoses**.
218 +* **Real-world testing** of AI-powered **structured reporting**.
219 +
220 +==== **Quality Assurance & Explainability** ====
221 +
222 +* **Annotations linked to structured knowledge graphs** for improved transparency.
223 +* **Interactive annotation editor** allows clinicians to validate AI outputs.
224 +
225 +----
226 +
227 +== **6. Collaborative Development** ==
228 +
229 +The project is **open to contributions** from **researchers, clinicians, and developers**.
230 +
231 +**Key tools include:**
232 +
233 +* **Jupyter Notebooks**: For data analysis and pipeline development.
234 +** Example: **probabilistic imputation**
235 +* **Wiki Pages**: For documenting methods and results.
236 +* **Drive and Bucket**: For sharing code, data, and outputs.
237 +* **Collaboration with related projects**:
238 +** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment**
239 +
240 +----
241 +
242 +== **7. Tools and Technologies** ==
243 +
244 +==== **Programming Languages:** ====
245 +
246 +* **Python** for AI and data processing.
247 +
248 +==== **Frameworks:** ====
249 +
250 +* **TensorFlow** and **PyTorch** for machine learning.
251 +* **Flask** or **FastAPI** for backend services.
252 +
253 +==== **Visualization:** ====
254 +
255 +* **Plotly** and **Matplotlib** for interactive and static visualizations.
256 +
257 +==== **EBRAINS Services:** ====
258 +
259 +* **Collaboratory Lab** for running Notebooks.
260 +* **Buckets** for storing large datasets.
261 +
262 +----
263 +
264 +=== **Why This Matters** ===
265 +
266 +* The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.
267 +* It enables real-time tracking of disease progression across the three diagnostic axes.
268 +* It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.
workflow neurodiagnoses.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.manuelmenendez
Size
... ... @@ -1,1 +1,0 @@
1 -157.5 KB
Content