Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 23.1
edited by manuelmenendez
on 2025/02/15 12:55
Change comment: There is no comment for this version
To version 6.1
edited by manuelmenendez
on 2025/02/01 11:57
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,106 +1,173 @@
1 -**Neurodiagnoses AI** is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. Building upon the Florey Dementia Index (FDI) methodology, it now encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)**, which standardizes biomarker classification across all neurodegenerative diseases, facilitating cross-disease AI training.
1 +==== **Overview** ====
2 2  
3 -**Neuromarker: Generalized Biomarker Ontology**
3 +This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**.
4 4  
5 -Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration.
5 +----
6 6  
7 -**Core Biomarker Categories**
7 +=== **1. Data Integration** ===
8 8  
9 -Within the Neurodiagnoses AI framework, biomarkers are categorized as follows:
9 +==== **Data Sources** ====
10 10  
11 -|=**Category**|=**Description**
12 -|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic)
13 -|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein)
14 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL, autoantiboides
15 -|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers
16 -|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers
17 -|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS)
18 -|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores
19 -|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities
11 +**Biomedical Ontologies & Databases:**
20 20  
21 -**Integrating External Databases into Neurodiagnoses**
13 +* **Human Phenotype Ontology (HPO)** for symptom annotation.
14 +* **Gene Ontology (GO)** for molecular and cellular processes.
22 22  
23 -To enhance diagnostic precision, Neurodiagnoses AI incorporates data from multiple biomedical and neurological research databases. Researchers can integrate external datasets by following these steps:
16 +**Dimensionality Reduction and Interpretability:**
24 24  
25 -1. (((
26 -**Register for Access**
18 +* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**.
19 +* **Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts.
27 27  
28 -* Each external database requires individual registration and access approval.
29 -* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses.
30 -* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data.
31 -)))
32 -1. (((
33 -**Download & Prepare Data**
21 +**Neuroimaging & EEG/MEG Data:**
34 34  
35 -* Download datasets while adhering to database usage policies.
36 -* (((
37 -Ensure files meet Neurodiagnoses format requirements:
23 +* **MRI volumetric measures** for brain atrophy tracking.
24 +* **EEG functional connectivity patterns** (AI-Mind).
38 38  
39 -|=**Data Type**|=**Accepted Formats**
40 -|**Tabular Data**|.csv, .tsv
41 -|**Neuroimaging**|.nii, .dcm
42 -|**Genomic Data**|.fasta, .vcf
43 -|**Clinical Metadata**|.json, .xml
44 -)))
45 -* (((
46 -**Mandatory Fields for Integration**:
26 +**Clinical & Biomarker Data:**
47 47  
48 -* Subject ID: Unique patient identifier
49 -* Diagnosis: Standardized disease classification
50 -* Biomarkers: CSF, plasma, or imaging biomarkers
51 -* Genetic Data: Whole-genome or exome sequencing
52 -* Neuroimaging Metadata: MRI/PET acquisition parameters
53 -)))
54 -)))
55 -1. (((
56 -**Upload Data to Neurodiagnoses**
28 +* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light).
29 +* **Sleep monitoring and actigraphy data** (ADIS).
57 57  
58 -* (((
59 -**Option 1: Upload to EBRAINS Bucket**
31 +**Federated Learning Integration:**
60 60  
61 -* Location: EBRAINS Neurodiagnoses Bucket
62 -* Ensure correct metadata tagging before submission.
63 -)))
64 -* (((
65 -**Option 2: Contribute via GitHub Repository**
33 +* **Secure multi-center data harmonization** (PROMINENT).
66 66  
67 -* Location: GitHub Data Repository
68 -* Create a new folder under /data/ and include a dataset description.
69 -* For large datasets, contact project administrators before uploading.
70 -)))
71 -)))
72 -1. (((
73 -**Integrate Data into AI Models**
35 +----
74 74  
75 -* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts.
76 -* Standardize neuroimaging and biomarker formats using harmonization tools.
77 -* Utilize machine learning models to handle missing data and feature extraction.
78 -* Train AI models with newly integrated patient cohorts.
37 +==== **Annotation System for Multi-Modal Data** ====
79 79  
80 -**Reference**: See docs/data_processing.md for detailed instructions.
81 -)))
39 +To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will:
82 82  
83 -**AI-Driven Biomarker Categorization**
41 +* **Assign standardized metadata tags** to diagnostic features.
42 +* **Provide contextual explanations** for AI-based classifications.
43 +* **Track temporal disease progression annotations** to identify long-term trends.
84 84  
85 -Neurodiagnoses employs advanced AI models for biomarker classification:
45 +----
86 86  
87 -|=**Model Type**|=**Application**
88 -|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases
89 -|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers
90 -|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data
47 +=== **2. AI-Based Analysis** ===
91 91  
92 -**Collaboration & Partnerships**
49 +==== **Machine Learning & Deep Learning Models** ====
93 93  
94 -Neurodiagnoses actively seeks partnerships with data providers to:
51 +**Risk Prediction Models:**
95 95  
96 -* Enable API-based data integration for real-time processing.
97 -* Co-develop harmonized AI-ready datasets with standardized annotations.
98 -* Secure funding opportunities through joint grant applications.
53 +* **LETHE’s cognitive risk prediction model** integrated into the annotation framework.
99 99  
100 -**Interested in Partnering?**
55 +**Biomarker Classification & Probabilistic Imputation:**
101 101  
102 -If you represent a research consortium or database provider, reach out to explore data-sharing agreements.
57 +* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**.
103 103  
104 -**Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]
59 +**Neuroimaging Feature Extraction:**
105 105  
106 -
61 +* **MRI & EEG data** annotated with **neuroanatomical feature labels**.
62 +
63 +==== **AI-Powered Annotation System** ====
64 +
65 +* Uses **SHAP-based interpretability tools** to explain model decisions.
66 +* Generates **automated clinical annotations** in structured reports.
67 +* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**).
68 +
69 +----
70 +
71 +=== **3. Diagnostic Framework & Clinical Decision Support** ===
72 +
73 +==== **Tridimensional Diagnostic Axes** ====
74 +
75 +**Axis 1: Etiology (Pathogenic Mechanisms)**
76 +
77 +* Classification based on **genetic markers, cellular pathways, and environmental risk factors**.
78 +* **AI-assisted annotation** provides **causal interpretations** for clinical use.
79 +
80 +**Axis 2: Molecular Markers & Biomarkers**
81 +
82 +* **Integration of CSF, blood, and neuroimaging biomarkers**.
83 +* **Structured annotation** highlights **biological pathways linked to diagnosis**.
84 +
85 +**Axis 3: Neuroanatomoclinical Correlations**
86 +
87 +* **MRI and EEG data** provide anatomical and functional insights.
88 +* **AI-generated progression maps** annotate **brain structure-function relationships**.
89 +
90 +----
91 +
92 +=== **4. Computational Workflow & Annotation Pipelines** ===
93 +
94 +==== **Data Processing Steps** ====
95 +
96 +**Data Ingestion:**
97 +
98 +* **Harmonized datasets** stored in **EBRAINS Bucket**.
99 +* **Preprocessing pipelines** clean and standardize data.
100 +
101 +**Feature Engineering:**
102 +
103 +* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**.
104 +
105 +**AI-Generated Annotations:**
106 +
107 +* **Automated tagging** of diagnostic features in **structured reports**.
108 +* **Explainability modules (SHAP, LIME)** ensure transparency in predictions.
109 +
110 +**Clinical Decision Support Integration:**
111 +
112 +* **AI-annotated findings** fed into **interactive dashboards**.
113 +* **Clinicians can adjust, validate, and modify annotations**.
114 +
115 +----
116 +
117 +=== **5. Validation & Real-World Testing** ===
118 +
119 +==== **Prospective Clinical Study** ====
120 +
121 +* **Multi-center validation** of AI-based **annotations & risk stratifications**.
122 +* **Benchmarking against clinician-based diagnoses**.
123 +* **Real-world testing** of AI-powered **structured reporting**.
124 +
125 +==== **Quality Assurance & Explainability** ====
126 +
127 +* **Annotations linked to structured knowledge graphs** for improved transparency.
128 +* **Interactive annotation editor** allows clinicians to validate AI outputs.
129 +
130 +----
131 +
132 +=== **6. Collaborative Development** ===
133 +
134 +The project is **open to contributions** from **researchers, clinicians, and developers**.
135 +
136 +**Key tools include:**
137 +
138 +* **Jupyter Notebooks**: For data analysis and pipeline development.
139 +** Example: **probabilistic imputation**
140 +* **Wiki Pages**: For documenting methods and results.
141 +* **Drive and Bucket**: For sharing code, data, and outputs.
142 +* **Collaboration with related projects**:
143 +** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment**
144 +
145 +----
146 +
147 +=== **7. Tools and Technologies** ===
148 +
149 +==== **Programming Languages:** ====
150 +
151 +* **Python** for AI and data processing.
152 +
153 +==== **Frameworks:** ====
154 +
155 +* **TensorFlow** and **PyTorch** for machine learning.
156 +* **Flask** or **FastAPI** for backend services.
157 +
158 +==== **Visualization:** ====
159 +
160 +* **Plotly** and **Matplotlib** for interactive and static visualizations.
161 +
162 +==== **EBRAINS Services:** ====
163 +
164 +* **Collaboratory Lab** for running Notebooks.
165 +* **Buckets** for storing large datasets.
166 +
167 +----
168 +
169 +=== **Why This Matters** ===
170 +
171 +* **The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.**
172 +* **It enables real-time tracking of disease progression across the three diagnostic axes.**
173 +* **It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.**
workflow neurodiagnoses.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.manuelmenendez
Size
... ... @@ -1,1 +1,0 @@
1 -157.5 KB
Content