Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 24.1
edited by manuelmenendez
on 2025/02/15 12:57
on 2025/02/15 12:57
Change comment:
There is no comment for this version
To version 6.1
edited by manuelmenendez
on 2025/02/01 11:57
on 2025/02/01 11:57
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,117 +1,173 @@ 1 - **NeurodiagnosesAI**is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. Building upon the Florey Dementia Index (FDI) methodology, it nowencompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the**GeneralizedNeuro Biomarker Ontology Categorization (Neuromarker)**, which standardizes biomarker classification across all neurodegenerative diseases, facilitating cross-disease AI training.1 +==== **Overview** ==== 2 2 3 -** Neuromarker:GeneralizedBiomarkerOntology**3 +This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**. 4 4 5 - Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration.5 +---- 6 6 7 -** CoreBiomarker Categories**7 +=== **1. Data Integration** === 8 8 9 - Withinthe NeurodiagnosesAI framework, biomarkers arecategorized asfollows:9 +==== **Data Sources** ==== 10 10 11 -|=**Category**|=**Description** 12 -|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 13 -|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 14 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL, autoantiboides 15 -|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 16 -|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 17 -|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 18 -|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 19 -|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 11 +**Biomedical Ontologies & Databases:** 20 20 21 -**Integrating External Databases into Neurodiagnoses** 13 +* **Human Phenotype Ontology (HPO)** for symptom annotation. 14 +* **Gene Ontology (GO)** for molecular and cellular processes. 22 22 23 - Toenhance diagnostic precision, Neurodiagnoses AIincorporatesdata from multiple biomedicaland neurologicalresearch databases. Researchers canintegrate externaldatasets by followingthese steps:16 +**Dimensionality Reduction and Interpretability:** 24 24 25 - 1.(((26 -** RegisterforAccess**18 +* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 19 +* **Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 27 27 28 -* Each external database requires individual registration and access approval. 29 -* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses. 30 -* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data. 31 -))) 32 -1. ((( 33 -**Download & Prepare Data** 21 +**Neuroimaging & EEG/MEG Data:** 34 34 35 -* Download datasets while adhering to database usage policies. 36 -* ((( 37 -Ensure files meet Neurodiagnoses format requirements: 23 +* **MRI volumetric measures** for brain atrophy tracking. 24 +* **EEG functional connectivity patterns** (AI-Mind). 38 38 39 -|=**Data Type**|=**Accepted Formats** 40 -|**Tabular Data**|.csv, .tsv 41 -|**Neuroimaging**|.nii, .dcm 42 -|**Genomic Data**|.fasta, .vcf 43 -|**Clinical Metadata**|.json, .xml 44 -))) 45 -* ((( 46 -**Mandatory Fields for Integration**: 26 +**Clinical & Biomarker Data:** 47 47 48 -* Subject ID: Unique patient identifier 49 -* Diagnosis: Standardized disease classification 50 -* Biomarkers: CSF, plasma, or imaging biomarkers 51 -* Genetic Data: Whole-genome or exome sequencing 52 -* Neuroimaging Metadata: MRI/PET acquisition parameters 53 -))) 54 -))) 55 -1. ((( 56 -**Upload Data to Neurodiagnoses** 28 +* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 29 +* **Sleep monitoring and actigraphy data** (ADIS). 57 57 58 -* ((( 59 -**Option 1: Upload to EBRAINS Bucket** 31 +**Federated Learning Integration:** 60 60 61 -* Location: EBRAINS Neurodiagnoses Bucket 62 -* Ensure correct metadata tagging before submission. 63 -))) 64 -* ((( 65 -**Option 2: Contribute via GitHub Repository** 33 +* **Secure multi-center data harmonization** (PROMINENT). 66 66 67 -* Location: GitHub Data Repository 68 -* Create a new folder under /data/ and include a dataset description. 69 -* For large datasets, contact project administrators before uploading. 70 -))) 71 -))) 72 -1. ((( 73 -**Integrate Data into AI Models** 35 +---- 74 74 75 -* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 76 -* Standardize neuroimaging and biomarker formats using harmonization tools. 77 -* Utilize machine learning models to handle missing data and feature extraction. 78 -* Train AI models with newly integrated patient cohorts. 37 +==== **Annotation System for Multi-Modal Data** ==== 79 79 80 -**Reference**: See docs/data_processing.md for detailed instructions. 81 -))) 39 +To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will: 82 82 83 -**AI-Driven Biomarker Categorization** 41 +* **Assign standardized metadata tags** to diagnostic features. 42 +* **Provide contextual explanations** for AI-based classifications. 43 +* **Track temporal disease progression annotations** to identify long-term trends. 84 84 85 - Neurodiagnoses employs advanced AI models for biomarker classification:45 +---- 86 86 87 -|=**Model Type**|=**Application** 88 -|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 89 -|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 90 -|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 47 +=== **2. AI-Based Analysis** === 91 91 92 -** Collaboration &Partnerships**49 +==== **Machine Learning & Deep Learning Models** ==== 93 93 94 - Neurodiagnoses actively seekspartnerships withdata providersto:51 +**Risk Prediction Models:** 95 95 96 -* Enable API-based data integration for real-time processing. 97 -* Co-develop harmonized AI-ready datasets with standardized annotations. 98 -* Secure funding opportunities through joint grant applications. 53 +* **LETHE’s cognitive risk prediction model** integrated into the annotation framework. 99 99 100 -** Interestedin Partnering?**55 +**Biomarker Classification & Probabilistic Imputation:** 101 101 102 - Ifyourepresent aresearch consortiumordatabaseprovider,reachout to exploredata-sharing agreements.57 +* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. 103 103 104 -** Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]59 +**Neuroimaging Feature Extraction:** 105 105 106 -** FinalNotes**61 +* **MRI & EEG data** annotated with **neuroanatomical feature labels**. 107 107 108 - NeurodiagnosesAIis committed to advancing the integration of artificial intelligence in neurodiagnosticprocesses. By continuously expanding our dataecosystem andincorporatingstandardized biomarkerclassifications through the Neuromarker ontology, we aim to enhance cross-disease AI training and improve diagnostic accuracy across neurodegenerative disorders.63 +==== **AI-Powered Annotation System** ==== 109 109 110 -We encourage researchers and institutions to contribute new datasets and methodologies to further enrich this collaborative platform. Your participation is vital in driving innovation and fostering a deeper understanding of complex neurological conditions. 65 +* Uses **SHAP-based interpretability tools** to explain model decisions. 66 +* Generates **automated clinical annotations** in structured reports. 67 +* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). 111 111 112 - **For additional technical documentation and collaboration opportunities:**69 +---- 113 113 114 -* **GitHub Repository:** [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]] 115 -* **EBRAINS Collaboration Page:** [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]] 71 +=== **3. Diagnostic Framework & Clinical Decision Support** === 116 116 117 -If you encounter any issues during data integration or have suggestions for improvement, please open a GitHub Issue or consult the EBRAINS Neurodiagnoses Forum. Together, we can advance the field of neurodiagnostics and contribute to better patient outcomes. 73 +==== **Tridimensional Diagnostic Axes** ==== 74 + 75 +**Axis 1: Etiology (Pathogenic Mechanisms)** 76 + 77 +* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 78 +* **AI-assisted annotation** provides **causal interpretations** for clinical use. 79 + 80 +**Axis 2: Molecular Markers & Biomarkers** 81 + 82 +* **Integration of CSF, blood, and neuroimaging biomarkers**. 83 +* **Structured annotation** highlights **biological pathways linked to diagnosis**. 84 + 85 +**Axis 3: Neuroanatomoclinical Correlations** 86 + 87 +* **MRI and EEG data** provide anatomical and functional insights. 88 +* **AI-generated progression maps** annotate **brain structure-function relationships**. 89 + 90 +---- 91 + 92 +=== **4. Computational Workflow & Annotation Pipelines** === 93 + 94 +==== **Data Processing Steps** ==== 95 + 96 +**Data Ingestion:** 97 + 98 +* **Harmonized datasets** stored in **EBRAINS Bucket**. 99 +* **Preprocessing pipelines** clean and standardize data. 100 + 101 +**Feature Engineering:** 102 + 103 +* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. 104 + 105 +**AI-Generated Annotations:** 106 + 107 +* **Automated tagging** of diagnostic features in **structured reports**. 108 +* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 109 + 110 +**Clinical Decision Support Integration:** 111 + 112 +* **AI-annotated findings** fed into **interactive dashboards**. 113 +* **Clinicians can adjust, validate, and modify annotations**. 114 + 115 +---- 116 + 117 +=== **5. Validation & Real-World Testing** === 118 + 119 +==== **Prospective Clinical Study** ==== 120 + 121 +* **Multi-center validation** of AI-based **annotations & risk stratifications**. 122 +* **Benchmarking against clinician-based diagnoses**. 123 +* **Real-world testing** of AI-powered **structured reporting**. 124 + 125 +==== **Quality Assurance & Explainability** ==== 126 + 127 +* **Annotations linked to structured knowledge graphs** for improved transparency. 128 +* **Interactive annotation editor** allows clinicians to validate AI outputs. 129 + 130 +---- 131 + 132 +=== **6. Collaborative Development** === 133 + 134 +The project is **open to contributions** from **researchers, clinicians, and developers**. 135 + 136 +**Key tools include:** 137 + 138 +* **Jupyter Notebooks**: For data analysis and pipeline development. 139 +** Example: **probabilistic imputation** 140 +* **Wiki Pages**: For documenting methods and results. 141 +* **Drive and Bucket**: For sharing code, data, and outputs. 142 +* **Collaboration with related projects**: 143 +** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 144 + 145 +---- 146 + 147 +=== **7. Tools and Technologies** === 148 + 149 +==== **Programming Languages:** ==== 150 + 151 +* **Python** for AI and data processing. 152 + 153 +==== **Frameworks:** ==== 154 + 155 +* **TensorFlow** and **PyTorch** for machine learning. 156 +* **Flask** or **FastAPI** for backend services. 157 + 158 +==== **Visualization:** ==== 159 + 160 +* **Plotly** and **Matplotlib** for interactive and static visualizations. 161 + 162 +==== **EBRAINS Services:** ==== 163 + 164 +* **Collaboratory Lab** for running Notebooks. 165 +* **Buckets** for storing large datasets. 166 + 167 +---- 168 + 169 +=== **Why This Matters** === 170 + 171 +* **The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.** 172 +* **It enables real-time tracking of disease progression across the three diagnostic axes.** 173 +* **It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.**
- workflow neurodiagnoses.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.manuelmenendez - Size
-
... ... @@ -1,1 +1,0 @@ 1 -157.5 KB - Content