Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 25.1
edited by manuelmenendez
on 2025/02/22 18:32
on 2025/02/22 18:32
Change comment:
There is no comment for this version
To version 12.1
edited by manuelmenendez
on 2025/02/08 17:22
on 2025/02/08 17:22
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,121 +1,189 @@ 1 - **NeurodiagnosesAI**is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. Building upon the Florey Dementia Index (FDI) methodology, it nowencompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the**GeneralizedNeuro Biomarker Ontology Categorization (Neuromarker)**, which standardizes biomarker classification across all neurodegenerative diseases, facilitating cross-disease AI training.1 +==== **Overview** ==== 2 2 3 -** Neuromarker:GeneralizedBiomarkerOntology**3 +This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**. 4 4 5 - Neuromarkerextends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorizationframework applicable toall neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration.5 +=== **Workflow** === 6 6 7 -**Recommended Software** 7 +1. ((( 8 +**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]** 8 8 9 -There is a suite of software that can help implement the workflow needed in Neurodiagnoses. Find a list of recommendations [[here>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/recommended_software]]. 10 +* Create a **GitHub repository** for AI scripts and models. 11 +* Use **GitHub Projects** to manage research milestones. 12 +))) 13 +1. ((( 14 +**We Use EBRAINS for Data & Collaboration** 10 10 11 -**Core Biomarker Categories** 16 +* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**. 17 +* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models. 18 +* Use **EBRAINS Wiki** for structured documentation and research discussion. 19 +))) 12 12 13 - Within the Neurodiagnoses AI framework, biomarkers are categorized as follows:21 +---- 14 14 15 -|=**Category**|=**Description** 16 -|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 17 -|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 18 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL, autoantiboides 19 -|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 20 -|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 21 -|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 22 -|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 23 -|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 23 +=== **1. Data Integration** === 24 24 25 -** Integrating ExternalDatabasesintoNeurodiagnoses**25 +==== **Data Sources** ==== 26 26 27 - To enhance diagnostic precision, Neurodiagnoses AI incorporates data frommultiplebiomedicaland neurological researchdatabases. Researchers can integrate external datasets by following these steps:27 +**Biomedical Ontologies & Databases:** 28 28 29 - 1.(((30 -** RegisterforAccess**29 +* **Human Phenotype Ontology (HPO)** for symptom annotation. 30 +* **Gene Ontology (GO)** for molecular and cellular processes. 31 31 32 -* Each external database requires individual registration and access approval. 33 -* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses. 34 -* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data. 35 -))) 36 -1. ((( 37 -**Download & Prepare Data** 32 +**Dimensionality Reduction and Interpretability:** 38 38 39 -* Download datasets while adhering to database usage policies. 40 -* ((( 41 -Ensure files meet Neurodiagnoses format requirements: 34 +* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 35 +* **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 42 42 43 -|=**Data Type**|=**Accepted Formats** 44 -|**Tabular Data**|.csv, .tsv 45 -|**Neuroimaging**|.nii, .dcm 46 -|**Genomic Data**|.fasta, .vcf 47 -|**Clinical Metadata**|.json, .xml 48 -))) 49 -* ((( 50 -**Mandatory Fields for Integration**: 37 +**Neuroimaging & EEG/MEG Data:** 51 51 52 -* Subject ID: Unique patient identifier 53 -* Diagnosis: Standardized disease classification 54 -* Biomarkers: CSF, plasma, or imaging biomarkers 55 -* Genetic Data: Whole-genome or exome sequencing 56 -* Neuroimaging Metadata: MRI/PET acquisition parameters 57 -))) 58 -))) 59 -1. ((( 60 -**Upload Data to Neurodiagnoses** 39 +* **MRI volumetric measures** for brain atrophy tracking. 40 +* **EEG functional connectivity patterns** (AI-Mind). 61 61 62 -* ((( 63 -**Option 1: Upload to EBRAINS Bucket** 42 +**Clinical & Biomarker Data:** 64 64 65 -* Location: EBRAINS Neurodiagnoses Bucket 66 -* Ensure correct metadata tagging before submission. 67 -))) 68 -* ((( 69 -**Option 2: Contribute via GitHub Repository** 44 +* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 45 +* **Sleep monitoring and actigraphy data** (ADIS). 70 70 71 -* Location: GitHub Data Repository 72 -* Create a new folder under /data/ and include a dataset description. 73 -* For large datasets, contact project administrators before uploading. 74 -))) 75 -))) 76 -1. ((( 77 -**Integrate Data into AI Models** 47 +**Federated Learning Integration:** 78 78 79 -* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 80 -* Standardize neuroimaging and biomarker formats using harmonization tools. 81 -* Utilize machine learning models to handle missing data and feature extraction. 82 -* Train AI models with newly integrated patient cohorts. 49 +* **Secure multi-center data harmonization** (PROMINENT). 83 83 84 -**Reference**: See docs/data_processing.md for detailed instructions. 85 -))) 51 +---- 86 86 87 -**A I-DrivenBiomarkerCategorization**53 +==== **Annotation System for Multi-Modal Data** ==== 88 88 89 -Neurodiagnoses employsadvancedAImodelsfor biomarkerclassification:55 +To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will: 90 90 91 -|=**Model Type**|=**Application** 92 -|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 93 -|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 94 -|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 57 +* **Assign standardized metadata tags** to diagnostic features. 58 +* **Provide contextual explanations** for AI-based classifications. 59 +* **Track temporal disease progression annotations** to identify long-term trends. 95 95 96 - **Collaboration & Partnerships**61 +---- 97 97 98 - Neurodiagnosesactivelyeeks partnershipswith data providers to:63 +=== **2. AI-Based Analysis** === 99 99 100 -* Enable API-based data integration for real-time processing. 101 -* Co-develop harmonized AI-ready datasets with standardized annotations. 102 -* Secure funding opportunities through joint grant applications. 65 +==== **Machine Learning & Deep Learning Models** ==== 103 103 104 -** InterestedinPartnering?**67 +**Risk Prediction Models:** 105 105 106 - Ifyou representa research consortiumordatabaseprovider,reach out to exploredata-sharingagreements.69 +* **LETHE’s cognitive risk prediction model** integrated into the annotation framework. 107 107 108 -** Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]71 +**Biomarker Classification & Probabilistic Imputation:** 109 109 110 -** FinalNotes**73 +* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. 111 111 112 -Neuro diagnoses AIis committed to advancingtheintegration of artificial intelligence in neurodiagnostic processes.By continuously expanding our data ecosystem and incorporating standardized biomarkerclassifications through the Neuromarker ontology, we aim to enhance cross-disease AI training and improve diagnostic accuracy across neurodegenerative disorders.75 +**Neuroimaging Feature Extraction:** 113 113 114 - Weencourageresearchersandinstitutions to contribute newdatasetsand methodologiesto furtherenrichthiscollaborative platform. Your participation is vitalin driving innovation andfosteringadeeperunderstanding of complexneurologicalconditions.77 +* **MRI & EEG data** annotated with **neuroanatomical feature labels**. 115 115 116 -** Foradditionaltechnical documentationand collaboration opportunities:**79 +==== **AI-Powered Annotation System** ==== 117 117 118 -* **GitHub Repository:** [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]] 119 -* **EBRAINS Collaboration Page:** [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]] 81 +* Uses **SHAP-based interpretability tools** to explain model decisions. 82 +* Generates **automated clinical annotations** in structured reports. 83 +* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). 120 120 121 -If you encounter any issues during data integration or have suggestions for improvement, please open a GitHub Issue or consult the EBRAINS Neurodiagnoses Forum. Together, we can advance the field of neurodiagnostics and contribute to better patient outcomes. 85 +---- 86 + 87 +=== **3. Diagnostic Framework & Clinical Decision Support** === 88 + 89 +==== **Tridimensional Diagnostic Axes** ==== 90 + 91 +**Axis 1: Etiology (Pathogenic Mechanisms)** 92 + 93 +* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 94 +* **AI-assisted annotation** provides **causal interpretations** for clinical use. 95 + 96 +**Axis 2: Molecular Markers & Biomarkers** 97 + 98 +* **Integration of CSF, blood, and neuroimaging biomarkers**. 99 +* **Structured annotation** highlights **biological pathways linked to diagnosis**. 100 + 101 +**Axis 3: Neuroanatomoclinical Correlations** 102 + 103 +* **MRI and EEG data** provide anatomical and functional insights. 104 +* **AI-generated progression maps** annotate **brain structure-function relationships**. 105 + 106 +---- 107 + 108 +=== **4. Computational Workflow & Annotation Pipelines** === 109 + 110 +==== **Data Processing Steps** ==== 111 + 112 +**Data Ingestion:** 113 + 114 +* **Harmonized datasets** stored in **EBRAINS Bucket**. 115 +* **Preprocessing pipelines** clean and standardize data. 116 + 117 +**Feature Engineering:** 118 + 119 +* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. 120 + 121 +**AI-Generated Annotations:** 122 + 123 +* **Automated tagging** of diagnostic features in **structured reports**. 124 +* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 125 + 126 +**Clinical Decision Support Integration:** 127 + 128 +* **AI-annotated findings** fed into **interactive dashboards**. 129 +* **Clinicians can adjust, validate, and modify annotations**. 130 + 131 +---- 132 + 133 +=== **5. Validation & Real-World Testing** === 134 + 135 +==== **Prospective Clinical Study** ==== 136 + 137 +* **Multi-center validation** of AI-based **annotations & risk stratifications**. 138 +* **Benchmarking against clinician-based diagnoses**. 139 +* **Real-world testing** of AI-powered **structured reporting**. 140 + 141 +==== **Quality Assurance & Explainability** ==== 142 + 143 +* **Annotations linked to structured knowledge graphs** for improved transparency. 144 +* **Interactive annotation editor** allows clinicians to validate AI outputs. 145 + 146 +---- 147 + 148 +=== **6. Collaborative Development** === 149 + 150 +The project is **open to contributions** from **researchers, clinicians, and developers**. 151 + 152 +**Key tools include:** 153 + 154 +* **Jupyter Notebooks**: For data analysis and pipeline development. 155 +** Example: **probabilistic imputation** 156 +* **Wiki Pages**: For documenting methods and results. 157 +* **Drive and Bucket**: For sharing code, data, and outputs. 158 +* **Collaboration with related projects**: 159 +** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 160 + 161 +---- 162 + 163 +=== **7. Tools and Technologies** === 164 + 165 +==== **Programming Languages:** ==== 166 + 167 +* **Python** for AI and data processing. 168 + 169 +==== **Frameworks:** ==== 170 + 171 +* **TensorFlow** and **PyTorch** for machine learning. 172 +* **Flask** or **FastAPI** for backend services. 173 + 174 +==== **Visualization:** ==== 175 + 176 +* **Plotly** and **Matplotlib** for interactive and static visualizations. 177 + 178 +==== **EBRAINS Services:** ==== 179 + 180 +* **Collaboratory Lab** for running Notebooks. 181 +* **Buckets** for storing large datasets. 182 + 183 +---- 184 + 185 +=== **Why This Matters** === 186 + 187 +* The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful. 188 +* It enables real-time tracking of disease progression across the three diagnostic axes. 189 +* It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.
- workflow neurodiagnoses.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.manuelmenendez - Size
-
... ... @@ -1,1 +1,0 @@ 1 -157.5 KB - Content