Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 28.1
edited by manuelmenendez
on 2025/03/14 08:31
on 2025/03/14 08:31
Change comment:
There is no comment for this version
To version 12.1
edited by manuelmenendez
on 2025/02/08 17:22
on 2025/02/08 17:22
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,216 +1,189 @@ 1 - **NeurodiagnosesAI**is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. It encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the**GeneralizedNeuro Biomarker Ontology Categorization (Neuromarker) **and** Disease Knowledge Transfer (DKT)**, which standardizes disease and biomarker classification across all CNS diseases, facilitating cross-disease AI training.1 +==== **Overview** ==== 2 2 3 -** Neuromarker:GeneralizedBiomarkerOntology**3 +This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**. 4 4 5 - Neuromarkerextends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorizationframework applicable toall neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration.5 +=== **Workflow** === 6 6 7 -**Recommended Software** 7 +1. ((( 8 +**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]** 8 8 9 -There is a suite of software that can help implement the workflow needed in Neurodiagnoses. Find a list of recommendations [[here>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/recommended_software]]. 10 +* Create a **GitHub repository** for AI scripts and models. 11 +* Use **GitHub Projects** to manage research milestones. 12 +))) 13 +1. ((( 14 +**We Use EBRAINS for Data & Collaboration** 10 10 11 -**Core Biomarker Categories** 16 +* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**. 17 +* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models. 18 +* Use **EBRAINS Wiki** for structured documentation and research discussion. 19 +))) 12 12 13 - Within the Neurodiagnoses AI framework, biomarkers are categorized as follows:21 +---- 14 14 15 -|=**Category**|=**Description** 16 -|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 17 -|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 18 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL, autoantiboides 19 -|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 20 -|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 21 -|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 22 -|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 23 -|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 23 +=== **1. Data Integration** === 24 24 25 -** Integrating ExternalDatabasesintoNeurodiagnoses**25 +==== **Data Sources** ==== 26 26 27 - To enhance diagnostic precision, Neurodiagnoses AI incorporates data frommultiplebiomedicaland neurological researchdatabases. Researchers can integrate external datasets by following these steps:27 +**Biomedical Ontologies & Databases:** 28 28 29 - 1.(((30 -** RegisterforAccess**29 +* **Human Phenotype Ontology (HPO)** for symptom annotation. 30 +* **Gene Ontology (GO)** for molecular and cellular processes. 31 31 32 -* Each external database requires individual registration and access approval. 33 -* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses. 34 -* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data. 35 -))) 36 -1. ((( 37 -**Download & Prepare Data** 32 +**Dimensionality Reduction and Interpretability:** 38 38 39 -* Download datasets while adhering to database usage policies. 40 -* ((( 41 -Ensure files meet Neurodiagnoses format requirements: 34 +* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 35 +* **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 42 42 43 -|=**Data Type**|=**Accepted Formats** 44 -|**Tabular Data**|.csv, .tsv 45 -|**Neuroimaging**|.nii, .dcm 46 -|**Genomic Data**|.fasta, .vcf 47 -|**Clinical Metadata**|.json, .xml 48 -))) 49 -* ((( 50 -**Mandatory Fields for Integration**: 37 +**Neuroimaging & EEG/MEG Data:** 51 51 52 -* Subject ID: Unique patient identifier 53 -* Diagnosis: Standardized disease classification 54 -* Biomarkers: CSF, plasma, or imaging biomarkers 55 -* Genetic Data: Whole-genome or exome sequencing 56 -* Neuroimaging Metadata: MRI/PET acquisition parameters 57 -))) 58 -))) 59 -1. ((( 60 -**Upload Data to Neurodiagnoses** 39 +* **MRI volumetric measures** for brain atrophy tracking. 40 +* **EEG functional connectivity patterns** (AI-Mind). 61 61 62 -* ((( 63 -**Option 1: Upload to EBRAINS Bucket** 42 +**Clinical & Biomarker Data:** 64 64 65 -* Location: EBRAINS Neurodiagnoses Bucket 66 -* Ensure correct metadata tagging before submission. 67 -))) 68 -* ((( 69 -**Option 2: Contribute via GitHub Repository** 44 +* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 45 +* **Sleep monitoring and actigraphy data** (ADIS). 70 70 71 -* Location: GitHub Data Repository 72 -* Create a new folder under /data/ and include a dataset description. 73 -* For large datasets, contact project administrators before uploading. 74 -))) 75 -))) 76 -1. ((( 77 -**Integrate Data into AI Models** 47 +**Federated Learning Integration:** 78 78 79 -* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 80 -* Standardize neuroimaging and biomarker formats using harmonization tools. 81 -* Utilize machine learning models to handle missing data and feature extraction. 82 -* Train AI models with newly integrated patient cohorts. 49 +* **Secure multi-center data harmonization** (PROMINENT). 83 83 84 -**Reference**: See docs/data_processing.md for detailed instructions. 85 -))) 51 +---- 86 86 87 -**A I-DrivenBiomarkerCategorization**53 +==== **Annotation System for Multi-Modal Data** ==== 88 88 89 -Neurodiagnoses employsadvancedAImodelsfor biomarkerclassification:55 +To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will: 90 90 91 -|=**Model Type**|=**Application** 92 -|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 93 -|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 94 -|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 57 +* **Assign standardized metadata tags** to diagnostic features. 58 +* **Provide contextual explanations** for AI-based classifications. 59 +* **Track temporal disease progression annotations** to identify long-term trends. 95 95 96 - === **Jupyter Integration with EBRAINS** ===61 +---- 97 97 98 -=== ** Overview** ===63 +=== **2. AI-Based Analysis** === 99 99 100 - NeurodiagnosesOpen Source leverages**Jupyter Notebooks from EBRAINS** to facilitateneurodiagnosticresearch, biomarker analysis, and AI-driven data processing.Thisintegration provides an interactive and reproducibleenvironment for developing machine learningmodels, analyzing neuroimaging data, and exploring multimodal biomarkers. Jupyter integration in EBRAINS empowers **Neurodiagnoses Open Source** to: ✅ **AnalyzeMRI, EEG, and biomarkerdataefficiently**. ✅ **Train machine learning modelswith high-performance computing**.✅ **Ensure transparency with interactive explainability tools**. ✅ **Enable collaborative neurodiagnostic research with reproducible notebooks**.65 +==== **Machine Learning & Deep Learning Models** ==== 101 101 102 - ===**Key Capabilitiesof Jupyterin Neurodiagnoses**===67 +**Risk Prediction Models:** 103 103 104 - ====**1.NeuroimagingAnalysis(MRI,fMRI, PET)** ====69 +* **LETHE’s cognitive risk prediction model** integrated into the annotation framework. 105 105 106 -* **Preprocessing Pipelines:** 107 -** Use **Nipype, NiLearn, ANTs, and FreeSurfer** for structural and functional MRI analysis. 108 -** Skull stripping, segmentation, and registration of MRI scans. 109 -** Entropy-based slice selection for training deep learning models. 110 -* **Deep Learning for Neuroimaging:** 111 -** Implement **CNN-based models (ResNet, VGG16, Autoencoders)** for biomarker extraction. 112 -** Feature-based classification of **Alzheimer’s, Parkinson’s, and MCI** from neuroimaging data. 71 +**Biomarker Classification & Probabilistic Imputation:** 113 113 114 - ====**2.EEGandMEG SignalProcessing**====73 +* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. 115 115 116 -* **Data Preprocessing & Artifact Removal:** 117 -** Use **MNE-Python** for filtering, ICA-based artifact rejection, and time-series normalization. 118 -** Extract frequency and time-domain features from EEG/MEG signals. 119 -* **Feature Engineering & Connectivity Analysis:** 120 -** Functional connectivity analysis using **coherence and phase synchronization metrics**. 121 -** Graph-theory-based EEG biomarkers for neurodegenerative disease classification. 122 -* **Deep Learning for EEG Analysis:** 123 -** Train LSTMs and CNNs for automatic EEG-based classification of MCI and cognitive decline. 75 +**Neuroimaging Feature Extraction:** 124 124 125 - ====**3.MachineLearning forBiomarkerDiscovery**====77 +* **MRI & EEG data** annotated with **neuroanatomical feature labels**. 126 126 127 -* **SHAP-based Explainability for Biomarkers:** 128 -** Use **Random Forest + SHAP** to rank the most predictive CSF, blood, and imaging biomarkers. 129 -** Generate SHAP summary plots to interpret the impact of individual biomarkers. 130 -* **Multi-Modal Feature Selection:** 131 -** Implement **Anchor-Graph Feature Selection** to combine MRI, EEG, and CSF data. 132 -** PCA and autoencoders for dimensionality reduction and feature extraction. 133 -* **Automated Risk Prediction Models:** 134 -** Train ensemble models combining **deep learning and classical ML algorithms**. 135 -** Apply **subject-level cross-validation** to prevent data leakage and ensure reproducibility. 79 +==== **AI-Powered Annotation System** ==== 136 136 137 -==== **4. Computational Simulations & Virtual Brain Models** ==== 81 +* Uses **SHAP-based interpretability tools** to explain model decisions. 82 +* Generates **automated clinical annotations** in structured reports. 83 +* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). 138 138 139 -* **Integration with The Virtual Brain (TVB):** 140 -** Simulate large-scale brain networks based on individual neuroimaging data. 141 -** Model the effect of neurodegenerative progression on brain activity. 142 -* **Cortical and Subcortical Connectivity Analysis:** 143 -** Generate connectivity matrices using diffusion MRI and functional MRI correlations. 144 -** Validate computational simulations with real patient data from EBRAINS datasets. 85 +---- 145 145 146 -=== =**5.InteractiveDataVisualization& Reporting** ====87 +=== **3. Diagnostic Framework & Clinical Decision Support** === 147 147 148 -* **Dynamic Plots & Dashboards:** 149 -** Use **Matplotlib, Seaborn, Plotly** for interactive visualizations of biomarkers. 150 -** Implement real-time MRI slice rendering and EEG signal visualization. 151 -* **Automated Report Generation:** 152 -** Generate **Jupyter-based PDF reports** summarizing key findings. 153 -** Export analysis results in JSON, CSV, and interactive web dashboards. 89 +==== **Tridimensional Diagnostic Axes** ==== 154 154 155 - ===**HowtoUse NeurodiagnoseswithJupyter inEBRAINS**===91 +**Axis 1: Etiology (Pathogenic Mechanisms)** 156 156 157 -==== **1. Access EBRAINS Jupyter Environment** ==== 93 +* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 94 +* **AI-assisted annotation** provides **causal interpretations** for clinical use. 158 158 159 -1. Create an **EBRAINS account** at [[EBRAINS.eu>>url:https://ebrains.eu/]]. 160 -1. Navigate to the **Collaboratory** and open the Jupyter Lab interface. 161 -1. Clone the Neurodiagnoses repository: 96 +**Axis 2: Molecular Markers & Biomarkers** 162 162 163 -{{{git clone https://github.com/neurodiagnoses 164 -cd neurodiagnoses 165 -pip install -r requirements.txt 166 -}}} 98 +* **Integration of CSF, blood, and neuroimaging biomarkers**. 99 +* **Structured annotation** highlights **biological pathways linked to diagnosis**. 167 167 168 - ====**2. Run PrebuiltNeurodiagnosesNotebooks**====101 +**Axis 3: Neuroanatomoclinical Correlations** 169 169 170 -1. Open the **notebooks/** directory inside Jupyter. 171 -1. Run any of the available notebooks: 172 -1*. mri_biomarker_analysis.ipynb → Extracts MRI-based biomarkers. 173 -1*. eeg_preprocessing.ipynb → Cleans and processes EEG signals. 174 -1*. shap_biomarker_explainability.ipynb → Visualizes biomarker importance. 175 -1*. disease_risk_prediction.ipynb → Runs ML models for disease classification. 103 +* **MRI and EEG data** provide anatomical and functional insights. 104 +* **AI-generated progression maps** annotate **brain structure-function relationships**. 176 176 177 - ==== **3. Train Custom AI Models on EBRAINS HPC Resources** ====106 +---- 178 178 179 - *Use EBRAINS**GPUand HPCclusters**fordeeplearningtraining:108 +=== **4. Computational Workflow & Annotation Pipelines** === 180 180 181 -{{{from neurodiagnoses.models import train_cnn_model 182 -train_cnn_model(data_path='data/mri/', model_type='ResNet50') 183 -}}} 184 -* Save trained models for deployment: 110 +==== **Data Processing Steps** ==== 185 185 186 -{{{model.save('models/neurodiagnoses_cnn.h5') 187 -}}} 112 +**Data Ingestion:** 188 188 189 -For further developments, contribute to the **[[Neurodiagnoses GitHub Repository>>url:https://github.com/neurodiagnoses]]**. 114 +* **Harmonized datasets** stored in **EBRAINS Bucket**. 115 +* **Preprocessing pipelines** clean and standardize data. 190 190 191 -** Collaboration & Partnerships**117 +**Feature Engineering:** 192 192 193 - Neurodiagnoses activelyseekspartnershipswithdataprovidersto:119 +* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. 194 194 195 -* Enable API-based data integration for real-time processing. 196 -* Co-develop harmonized AI-ready datasets with standardized annotations. 197 -* Secure funding opportunities through joint grant applications. 121 +**AI-Generated Annotations:** 198 198 199 -**Interested in Partnering?** 123 +* **Automated tagging** of diagnostic features in **structured reports**. 124 +* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 200 200 201 - If you representaresearch consortiumordatabaseprovider, reach out toexplore data-sharing agreements.126 +**Clinical Decision Support Integration:** 202 202 203 -**Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 128 +* **AI-annotated findings** fed into **interactive dashboards**. 129 +* **Clinicians can adjust, validate, and modify annotations**. 204 204 205 - **Final Notes**131 +---- 206 206 207 - NeurodiagnosesAIis committed toadvancing the integration of artificialntelligence in neurodiagnostic processes. By continuouslyexpandingour dataecosystemand incorporating standardized biomarker classifications through the Neuromarker ontology, we aim to enhance cross-diseaseAI training and improvediagnostic accuracy acrossneurodegenerativedisorders.133 +=== **5. Validation & Real-World Testing** === 208 208 209 - Weencourage researchers and institutionsto contributenew datasets and methodologies to further enrichthis collaborativeplatform. Your participations vitalin driving innovation and fostering a deeperunderstandingof complex neurological conditions.135 +==== **Prospective Clinical Study** ==== 210 210 211 -**For additional technical documentation and collaboration opportunities:** 137 +* **Multi-center validation** of AI-based **annotations & risk stratifications**. 138 +* **Benchmarking against clinician-based diagnoses**. 139 +* **Real-world testing** of AI-powered **structured reporting**. 212 212 213 -* **GitHub Repository:** [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]] 214 -* **EBRAINS Collaboration Page:** [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]] 141 +==== **Quality Assurance & Explainability** ==== 215 215 216 -If you encounter any issues during data integration or have suggestions for improvement, please open a GitHub Issue or consult the EBRAINS Neurodiagnoses Forum. Together, we can advance the field of neurodiagnostics and contribute to better patient outcomes. 143 +* **Annotations linked to structured knowledge graphs** for improved transparency. 144 +* **Interactive annotation editor** allows clinicians to validate AI outputs. 145 + 146 +---- 147 + 148 +=== **6. Collaborative Development** === 149 + 150 +The project is **open to contributions** from **researchers, clinicians, and developers**. 151 + 152 +**Key tools include:** 153 + 154 +* **Jupyter Notebooks**: For data analysis and pipeline development. 155 +** Example: **probabilistic imputation** 156 +* **Wiki Pages**: For documenting methods and results. 157 +* **Drive and Bucket**: For sharing code, data, and outputs. 158 +* **Collaboration with related projects**: 159 +** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 160 + 161 +---- 162 + 163 +=== **7. Tools and Technologies** === 164 + 165 +==== **Programming Languages:** ==== 166 + 167 +* **Python** for AI and data processing. 168 + 169 +==== **Frameworks:** ==== 170 + 171 +* **TensorFlow** and **PyTorch** for machine learning. 172 +* **Flask** or **FastAPI** for backend services. 173 + 174 +==== **Visualization:** ==== 175 + 176 +* **Plotly** and **Matplotlib** for interactive and static visualizations. 177 + 178 +==== **EBRAINS Services:** ==== 179 + 180 +* **Collaboratory Lab** for running Notebooks. 181 +* **Buckets** for storing large datasets. 182 + 183 +---- 184 + 185 +=== **Why This Matters** === 186 + 187 +* The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful. 188 +* It enables real-time tracking of disease progression across the three diagnostic axes. 189 +* It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.
- workflow neurodiagnoses.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.manuelmenendez - Size
-
... ... @@ -1,1 +1,0 @@ 1 -157.5 KB - Content