Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 28.1
edited by manuelmenendez
on 2025/03/14 08:31
on 2025/03/14 08:31
Change comment:
There is no comment for this version
To version 13.1
edited by manuelmenendez
on 2025/02/09 09:56
on 2025/02/09 09:56
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,216 +1,273 @@ 1 - **NeurodiagnosesAI**is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. It encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the**GeneralizedNeuro Biomarker Ontology Categorization (Neuromarker) **and** Disease Knowledge Transfer (DKT)**, which standardizes disease and biomarker classification across all CNS diseases, facilitating cross-disease AI training.1 +==== **Overview** ==== 2 2 3 -** Neuromarker:GeneralizedBiomarkerOntology**3 +This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**. 4 4 5 - Neuromarkerextends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorizationframework applicable toall neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration.5 +=== **Workflow** === 6 6 7 -**Recommended Software** 7 +1. ((( 8 +**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]** 8 8 9 -There is a suite of software that can help implement the workflow needed in Neurodiagnoses. Find a list of recommendations [[here>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/recommended_software]]. 10 +* Create a **GitHub repository** for AI scripts and models. 11 +* Use **GitHub Projects** to manage research milestones. 12 +))) 13 +1. ((( 14 +**We Use EBRAINS for Data & Collaboration** 10 10 11 -**Core Biomarker Categories** 16 +* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**. 17 +* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models. 18 +* Use **EBRAINS Wiki** for structured documentation and research discussion. 19 +))) 12 12 13 - Within the Neurodiagnoses AI framework, biomarkers are categorized as follows:21 +---- 14 14 15 -|=**Category**|=**Description** 16 -|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 17 -|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 18 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL, autoantiboides 19 -|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 20 -|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 21 -|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 22 -|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 23 -|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 23 +=== **1. Data Integration** === 24 24 25 - **IntegratingExternal Databasesinto Neurodiagnoses**25 +== Overview == 26 26 27 -To enhance diagnostic precision, Neurodiagnoses AI incorporates data from multiple biomedical and neurological research databases. Researchers can integrate external datasets by following these steps: 28 28 28 +Neurodiagnoses integrates clinical data via the **EBRAINS Medical Informatics Platform (MIP)**. MIP federates decentralized clinical data, allowing Neurodiagnoses to securely access and process sensitive information for AI-based diagnostics. 29 + 30 +== How It Works == 31 + 32 + 29 29 1. ((( 30 -** Register forAccess**34 +**Authentication & API Access:** 31 31 32 -* Each external database requires individual registration and access approval. 33 -* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses. 34 -* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data. 36 +* Users must have an **EBRAINS account**. 37 +* Neurodiagnoses uses **secure API endpoints** to fetch clinical data (e.g., from the **Federation for Dementia**). 35 35 ))) 36 36 1. ((( 37 -**D ownload&Prepare Data**40 +**Data Mapping & Harmonization:** 38 38 39 -* Download datasets while adhering to database usage policies. 40 -* ((( 41 -Ensure files meet Neurodiagnoses format requirements: 42 - 43 -|=**Data Type**|=**Accepted Formats** 44 -|**Tabular Data**|.csv, .tsv 45 -|**Neuroimaging**|.nii, .dcm 46 -|**Genomic Data**|.fasta, .vcf 47 -|**Clinical Metadata**|.json, .xml 42 +* Retrieved data is **normalized** and converted to standard formats (.csv, .json). 43 +* Data from **multiple sources** is harmonized to ensure consistency for AI processing. 48 48 ))) 49 - *(((50 -** MandatoryFieldsfor Integration**:45 +1. ((( 46 +**Security & Compliance:** 51 51 52 -* Subject ID: Unique patient identifier 53 -* Diagnosis: Standardized disease classification 54 -* Biomarkers: CSF, plasma, or imaging biomarkers 55 -* Genetic Data: Whole-genome or exome sequencing 56 -* Neuroimaging Metadata: MRI/PET acquisition parameters 48 +* All data access is **logged and monitored**. 49 +* Data remains on **MIP servers** using **federated learning techniques** when possible. 50 +* Access is granted only after signing a **Data Usage Agreement (DUA)**. 57 57 ))) 58 -))) 59 -1. ((( 60 -**Upload Data to Neurodiagnoses** 61 61 62 -* ((( 63 -**Option 1: Upload to EBRAINS Bucket** 53 +== Implementation Steps == 64 64 65 -* Location: EBRAINS Neurodiagnoses Bucket 66 -* Ensure correct metadata tagging before submission. 55 + 56 +1. Clone the repository. 57 +1. Configure your **EBRAINS API credentials** in mip_integration.py. 58 +1. Run the script to **download and harmonize clinical data**. 59 +1. Process the data for **AI model training**. 60 + 61 +For more detailed instructions, please refer to the **[[MIP Documentation>>url:https://mip.ebrains.eu/]]**. 62 + 63 +---- 64 + 65 += Data Processing & Integration with Clinica.Run = 66 + 67 + 68 +== Overview == 69 + 70 + 71 +Neurodiagnoses now supports **Clinica.Run**, an open-source neuroimaging platform designed for **multimodal data processing and reproducible neuroscience workflows**. 72 + 73 +== How It Works == 74 + 75 + 76 +1. ((( 77 +**Neuroimaging Preprocessing:** 78 + 79 +* MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines**. 80 +* Supports **longitudinal and cross-sectional analyses**. 67 67 ))) 68 - *(((69 -** Option 2: ContributeviaGitHub Repository**82 +1. ((( 83 +**Automated Biomarker Extraction:** 70 70 71 -* Location: GitHub Data Repository 72 -* Create a new folder under /data/ and include a dataset description. 73 -* For large datasets, contact project administrators before uploading. 85 +* Standardized extraction of **volumetric, metabolic, and functional biomarkers**. 86 +* Integration with machine learning models in Neurodiagnoses. 74 74 ))) 75 -))) 76 76 1. ((( 77 -** IntegrateData intoAIModels**89 +**Data Security & Compliance:** 78 78 79 -* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 80 -* Standardize neuroimaging and biomarker formats using harmonization tools. 81 -* Utilize machine learning models to handle missing data and feature extraction. 82 -* Train AI models with newly integrated patient cohorts. 83 - 84 -**Reference**: See docs/data_processing.md for detailed instructions. 91 +* Clinica.Run operates in **compliance with GDPR and HIPAA**. 92 +* Neuroimaging data remains **within the original storage environment**. 85 85 ))) 86 86 87 - **AI-Driven Biomarker Categorization**95 +== Implementation Steps == 88 88 89 -Neurodiagnoses employs advanced AI models for biomarker classification: 90 90 91 - |=**ModelType**|=**Application**92 - |**GraphNeural Networks (GNNs)**|Identify sharedbiomarkerpathways across diseases93 - |**ContrastiveLearning**|Distinguishoverlappingvs. uniquebiomarkers94 - |**MultimodalTransformerModels**|Integrateimaging,omics, andclinicaldata98 +1. Install **Clinica.Run** dependencies. 99 +1. Configure your **Clinica.Run pipeline** in clinica_run_config.json. 100 +1. Run the pipeline for **preprocessing and biomarker extraction**. 101 +1. Use processed neuroimaging data for **AI-driven diagnostics** in Neurodiagnoses. 95 95 96 - ===**JupyterIntegrationwithEBRAINS**===103 +For further information, refer to **[[Clinica.Run Documentation>>url:https://clinica.run/]]**. 97 97 98 -=== **Overview**===105 +==== ==== 99 99 100 - NeurodiagnosesOpen Source leverages**Jupyter Notebooks from EBRAINS** to facilitateneurodiagnostic research, biomarker analysis, and AI-driven data processing. This integration provides an interactive and reproducible environment for developing machine learning models, analyzing neuroimaging data, and exploring multimodal biomarkers. Jupyter integration in EBRAINSempowers **Neurodiagnoses Open Source** to: ✅ **Analyze MRI, EEG, and biomarker data efficiently**. ✅ **Train machine learning modelswith high-performance computing**.✅ **Ensure transparency with interactive explainability tools**. ✅ **Enable collaborative neurodiagnostic research with reproducible notebooks**.107 +==== **Data Sources** ==== 101 101 102 - ===**KeyCapabilities ofJupyterNeurodiagnoses** ===109 +[[List of potential sources of databases>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 103 103 104 - ====**1. NeuroimagingAnalysis(MRI,fMRI, PET)**====111 +**Biomedical Ontologies & Databases:** 105 105 106 -* **Preprocessing Pipelines:** 107 -** Use **Nipype, NiLearn, ANTs, and FreeSurfer** for structural and functional MRI analysis. 108 -** Skull stripping, segmentation, and registration of MRI scans. 109 -** Entropy-based slice selection for training deep learning models. 110 -* **Deep Learning for Neuroimaging:** 111 -** Implement **CNN-based models (ResNet, VGG16, Autoencoders)** for biomarker extraction. 112 -** Feature-based classification of **Alzheimer’s, Parkinson’s, and MCI** from neuroimaging data. 113 +* **Human Phenotype Ontology (HPO)** for symptom annotation. 114 +* **Gene Ontology (GO)** for molecular and cellular processes. 113 113 114 - ====**2.EEGandMEG Signal Processing**====116 +**Dimensionality Reduction and Interpretability:** 115 115 116 -* **Data Preprocessing & Artifact Removal:** 117 -** Use **MNE-Python** for filtering, ICA-based artifact rejection, and time-series normalization. 118 -** Extract frequency and time-domain features from EEG/MEG signals. 119 -* **Feature Engineering & Connectivity Analysis:** 120 -** Functional connectivity analysis using **coherence and phase synchronization metrics**. 121 -** Graph-theory-based EEG biomarkers for neurodegenerative disease classification. 122 -* **Deep Learning for EEG Analysis:** 123 -** Train LSTMs and CNNs for automatic EEG-based classification of MCI and cognitive decline. 118 +* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**. 119 +* **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts. 124 124 125 - ====**3. MachineLearningforBiomarkerDiscovery**====121 +**Neuroimaging & EEG/MEG Data:** 126 126 127 -* **SHAP-based Explainability for Biomarkers:** 128 -** Use **Random Forest + SHAP** to rank the most predictive CSF, blood, and imaging biomarkers. 129 -** Generate SHAP summary plots to interpret the impact of individual biomarkers. 130 -* **Multi-Modal Feature Selection:** 131 -** Implement **Anchor-Graph Feature Selection** to combine MRI, EEG, and CSF data. 132 -** PCA and autoencoders for dimensionality reduction and feature extraction. 133 -* **Automated Risk Prediction Models:** 134 -** Train ensemble models combining **deep learning and classical ML algorithms**. 135 -** Apply **subject-level cross-validation** to prevent data leakage and ensure reproducibility. 123 +* **MRI volumetric measures** for brain atrophy tracking. 124 +* **EEG functional connectivity patterns** (AI-Mind). 136 136 137 - ====**4.ComputationalSimulations & Virtual Brain Models**====126 +**Clinical & Biomarker Data:** 138 138 139 -* **Integration with The Virtual Brain (TVB):** 140 -** Simulate large-scale brain networks based on individual neuroimaging data. 141 -** Model the effect of neurodegenerative progression on brain activity. 142 -* **Cortical and Subcortical Connectivity Analysis:** 143 -** Generate connectivity matrices using diffusion MRI and functional MRI correlations. 144 -** Validate computational simulations with real patient data from EBRAINS datasets. 128 +* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 129 +* **Sleep monitoring and actigraphy data** (ADIS). 145 145 146 - ====**5. InteractiveData Visualization& Reporting**====131 +**Federated Learning Integration:** 147 147 148 -* **Dynamic Plots & Dashboards:** 149 -** Use **Matplotlib, Seaborn, Plotly** for interactive visualizations of biomarkers. 150 -** Implement real-time MRI slice rendering and EEG signal visualization. 151 -* **Automated Report Generation:** 152 -** Generate **Jupyter-based PDF reports** summarizing key findings. 153 -** Export analysis results in JSON, CSV, and interactive web dashboards. 133 +* **Secure multi-center data harmonization** (PROMINENT). 154 154 155 - === **How to Use Neurodiagnoses with Jupyter in EBRAINS** ===135 +---- 156 156 157 -==== ** 1.AccessEBRAINSJupyterEnvironment** ====137 +==== **Annotation System for Multi-Modal Data** ==== 158 158 159 -1. Create an **EBRAINS account** at [[EBRAINS.eu>>url:https://ebrains.eu/]]. 160 -1. Navigate to the **Collaboratory** and open the Jupyter Lab interface. 161 -1. Clone the Neurodiagnoses repository: 139 +To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will: 162 162 163 -{{{git clone https://github.com/neurodiagnoses 164 -cd neurodiagnoses 165 -pip install -r requirements.txt 166 -}}} 141 +* **Assign standardized metadata tags** to diagnostic features. 142 +* **Provide contextual explanations** for AI-based classifications. 143 +* **Track temporal disease progression annotations** to identify long-term trends. 167 167 168 - ==== **2. Run Prebuilt Neurodiagnoses Notebooks** ====145 +---- 169 169 170 -1. Open the **notebooks/** directory inside Jupyter. 171 -1. Run any of the available notebooks: 172 -1*. mri_biomarker_analysis.ipynb → Extracts MRI-based biomarkers. 173 -1*. eeg_preprocessing.ipynb → Cleans and processes EEG signals. 174 -1*. shap_biomarker_explainability.ipynb → Visualizes biomarker importance. 175 -1*. disease_risk_prediction.ipynb → Runs ML models for disease classification. 147 +=== **2. AI-Based Analysis** === 176 176 177 -==== ** 3.TrainCustomAIModelson EBRAINS HPC Resources** ====149 +==== **Machine Learning & Deep Learning Models** ==== 178 178 179 -* UseEBRAINS **GPU andHPCclusters** fordeeplearning training:151 +**Risk Prediction Models:** 180 180 181 -{{{from neurodiagnoses.models import train_cnn_model 182 -train_cnn_model(data_path='data/mri/', model_type='ResNet50') 183 -}}} 184 -* Save trained models for deployment: 153 +* **LETHE’s cognitive risk prediction model** integrated into the annotation framework. 185 185 186 -{{{model.save('models/neurodiagnoses_cnn.h5') 187 -}}} 155 +**Biomarker Classification & Probabilistic Imputation:** 188 188 189 - Forfurther developments,contributetothe**[[NeurodiagnosesGitHubRepository>>url:https://github.com/neurodiagnoses]]**.157 +* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**. 190 190 191 -** Collaboration& Partnerships**159 +**Neuroimaging Feature Extraction:** 192 192 193 - Neurodiagnosesactively seeks partnershipswithdataprovidersto:161 +* **MRI & EEG data** annotated with **neuroanatomical feature labels**. 194 194 195 -* Enable API-based data integration for real-time processing. 196 -* Co-develop harmonized AI-ready datasets with standardized annotations. 197 -* Secure funding opportunities through joint grant applications. 163 +==== **AI-Powered Annotation System** ==== 198 198 199 -**Interested in Partnering?** 165 +* Uses **SHAP-based interpretability tools** to explain model decisions. 166 +* Generates **automated clinical annotations** in structured reports. 167 +* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**). 200 200 201 - If you represent a research consortium or database provider, reach out to explore data-sharing agreements.169 +---- 202 202 203 -** Contact**:[[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]171 +=== **3. Diagnostic Framework & Clinical Decision Support** === 204 204 205 -** FinalNotes**173 +==== **Tridimensional Diagnostic Axes** ==== 206 206 207 - NeurodiagnosesAIiscommittedto advancing the integration of artificialintelligence in neurodiagnostic processes. Bycontinuously expandingour dataecosystem andincorporatingstandardized biomarkerclassifications through the Neuromarker ontology, we aim to enhance cross-disease AI training and improve diagnostic accuracy across neurodegenerative disorders.175 +**Axis 1: Etiology (Pathogenic Mechanisms)** 208 208 209 -We encourage researchers and institutions to contribute new datasets and methodologies to further enrich this collaborative platform. Your participation is vital in driving innovation and fostering a deeper understanding of complex neurological conditions. 177 +* Classification based on **genetic markers, cellular pathways, and environmental risk factors**. 178 +* **AI-assisted annotation** provides **causal interpretations** for clinical use. 210 210 211 -** For additionaltechnical documentationandcollaboration opportunities:**180 +**Axis 2: Molecular Markers & Biomarkers** 212 212 213 -* ** GitHub Repository:**[[NeurodiagnosesGitHub>>url:https://github.com/neurodiagnoses]]214 -* ** EBRAINSCollaborationPage:**[[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]]182 +* **Integration of CSF, blood, and neuroimaging biomarkers**. 183 +* **Structured annotation** highlights **biological pathways linked to diagnosis**. 215 215 216 -If you encounter any issues during data integration or have suggestions for improvement, please open a GitHub Issue or consult the EBRAINS Neurodiagnoses Forum. Together, we can advance the field of neurodiagnostics and contribute to better patient outcomes. 185 +**Axis 3: Neuroanatomoclinical Correlations** 186 + 187 +* **MRI and EEG data** provide anatomical and functional insights. 188 +* **AI-generated progression maps** annotate **brain structure-function relationships**. 189 + 190 +---- 191 + 192 +=== **4. Computational Workflow & Annotation Pipelines** === 193 + 194 +==== **Data Processing Steps** ==== 195 + 196 +**Data Ingestion:** 197 + 198 +* **Harmonized datasets** stored in **EBRAINS Bucket**. 199 +* **Preprocessing pipelines** clean and standardize data. 200 + 201 +**Feature Engineering:** 202 + 203 +* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**. 204 + 205 +**AI-Generated Annotations:** 206 + 207 +* **Automated tagging** of diagnostic features in **structured reports**. 208 +* **Explainability modules (SHAP, LIME)** ensure transparency in predictions. 209 + 210 +**Clinical Decision Support Integration:** 211 + 212 +* **AI-annotated findings** fed into **interactive dashboards**. 213 +* **Clinicians can adjust, validate, and modify annotations**. 214 + 215 +---- 216 + 217 +=== **5. Validation & Real-World Testing** === 218 + 219 +==== **Prospective Clinical Study** ==== 220 + 221 +* **Multi-center validation** of AI-based **annotations & risk stratifications**. 222 +* **Benchmarking against clinician-based diagnoses**. 223 +* **Real-world testing** of AI-powered **structured reporting**. 224 + 225 +==== **Quality Assurance & Explainability** ==== 226 + 227 +* **Annotations linked to structured knowledge graphs** for improved transparency. 228 +* **Interactive annotation editor** allows clinicians to validate AI outputs. 229 + 230 +---- 231 + 232 +=== **6. Collaborative Development** === 233 + 234 +The project is **open to contributions** from **researchers, clinicians, and developers**. 235 + 236 +**Key tools include:** 237 + 238 +* **Jupyter Notebooks**: For data analysis and pipeline development. 239 +** Example: **probabilistic imputation** 240 +* **Wiki Pages**: For documenting methods and results. 241 +* **Drive and Bucket**: For sharing code, data, and outputs. 242 +* **Collaboration with related projects**: 243 +** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment** 244 + 245 +---- 246 + 247 +=== **7. Tools and Technologies** === 248 + 249 +==== **Programming Languages:** ==== 250 + 251 +* **Python** for AI and data processing. 252 + 253 +==== **Frameworks:** ==== 254 + 255 +* **TensorFlow** and **PyTorch** for machine learning. 256 +* **Flask** or **FastAPI** for backend services. 257 + 258 +==== **Visualization:** ==== 259 + 260 +* **Plotly** and **Matplotlib** for interactive and static visualizations. 261 + 262 +==== **EBRAINS Services:** ==== 263 + 264 +* **Collaboratory Lab** for running Notebooks. 265 +* **Buckets** for storing large datasets. 266 + 267 +---- 268 + 269 +=== **Why This Matters** === 270 + 271 +* The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful. 272 +* It enables real-time tracking of disease progression across the three diagnostic axes. 273 +* It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.
- workflow neurodiagnoses.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.manuelmenendez - Size
-
... ... @@ -1,1 +1,0 @@ 1 -157.5 KB - Content