Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 28.1
edited by manuelmenendez
on 2025/03/14 08:31
Change comment: There is no comment for this version
To version 17.1
edited by manuelmenendez
on 2025/02/09 13:01
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,216 +1,154 @@
1 -**Neurodiagnoses AI** is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. It encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker) **and** Disease Knowledge Transfer (DKT)**, which standardizes disease and biomarker classification across all CNS diseases, facilitating cross-disease AI training.
1 +== **Overview** ==
2 2  
3 -**Neuromarker: Generalized Biomarker Ontology**
3 +Neurodiagnoses develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility.**
4 4  
5 -Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration.
5 +This methodology integrates **multi-modal data**, including:
6 +**Genetic data** (whole-genome sequencing, polygenic risk scores).
7 +**Neuroimaging** (MRI, PET, EEG, MEG).
8 +**Neurophysiological data** (EEG-based biomarkers, sleep actigraphy).
9 +**CSF & Blood Biomarkers** (Amyloid-beta, Tau, Neurofilament Light).
6 6  
7 -**Recommended Software**
11 +By applying **machine learning models**, Neurodiagnoses generates **structured, explainable diagnostic outputs** to assist **clinical decision-making** and **biomarker-driven patient stratification.**
8 8  
9 -There is a suite of software that can help implement the workflow needed in Neurodiagnoses. Find a list of recommendations [[here>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/recommended_software]].
13 +----
10 10  
11 -**Core Biomarker Categories**
15 +== **Data Integration & External Databases** ==
12 12  
13 -Within the Neurodiagnoses AI framework, biomarkers are categorized as follows:
17 +=== **How to Use External Databases in Neurodiagnoses** ===
14 14  
15 -|=**Category**|=**Description**
16 -|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic)
17 -|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein)
18 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL, autoantiboides
19 -|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers
20 -|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers
21 -|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS)
22 -|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores
23 -|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities
19 +Neurodiagnoses integrates data from multiple **biomedical and neurological research databases**. Researchers can follow these steps to **access, prepare, and integrate** data into the Neurodiagnoses framework.
24 24  
25 -**Integrating External Databases into Neurodiagnoses**
21 +**Potential Data Sources**
22 +**Reference:** [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]]
26 26  
27 -To enhance diagnostic precision, Neurodiagnoses AI incorporates data from multiple biomedical and neurological research databases. Researchers can integrate external datasets by following these steps:
24 +=== **Register for Access** ===
28 28  
29 -1. (((
30 -**Register for Access**
26 +Each **external database** requires **individual registration** and approval.
27 +✔️ Follow the official **data access guidelines** of each provider.
28 +✔️ Ensure compliance with **ethical approvals** and **data-sharing agreements (DUAs).**
31 31  
32 -* Each external database requires individual registration and access approval.
33 -* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses.
34 -* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data.
35 -)))
36 -1. (((
37 -**Download & Prepare Data**
30 +=== **Download & Prepare Data** ===
38 38  
39 -* Download datasets while adhering to database usage policies.
40 -* (((
41 -Ensure files meet Neurodiagnoses format requirements:
32 +Once access is granted, download datasets **following compliance guidelines** and **format requirements** for integration.
42 42  
43 -|=**Data Type**|=**Accepted Formats**
44 -|**Tabular Data**|.csv, .tsv
45 -|**Neuroimaging**|.nii, .dcm
46 -|**Genomic Data**|.fasta, .vcf
47 -|**Clinical Metadata**|.json, .xml
48 -)))
49 -* (((
50 -**Mandatory Fields for Integration**:
34 +**Supported File Formats**
51 51  
52 -* Subject ID: Unique patient identifier
53 -* Diagnosis: Standardized disease classification
54 -* Biomarkers: CSF, plasma, or imaging biomarkers
55 -* Genetic Data: Whole-genome or exome sequencing
56 -* Neuroimaging Metadata: MRI/PET acquisition parameters
57 -)))
58 -)))
59 -1. (((
60 -**Upload Data to Neurodiagnoses**
36 +* **Tabular Data**: .csv, .tsv
37 +* **Neuroimaging Data**: .nii, .dcm
38 +* **Genomic Data**: .fasta, .vcf
39 +* **Clinical Metadata**: .json, .xml
61 61  
62 -* (((
63 -**Option 1: Upload to EBRAINS Bucket**
41 +**Mandatory Fields for Integration**
64 64  
65 -* Location: EBRAINS Neurodiagnoses Bucket
66 -* Ensure correct metadata tagging before submission.
67 -)))
68 -* (((
69 -**Option 2: Contribute via GitHub Repository**
43 +|=**Field Name**|=**Description**
44 +|**Subject ID**|Unique patient identifier
45 +|**Diagnosis**|Standardized disease classification
46 +|**Biomarkers**|CSF, plasma, or imaging biomarkers
47 +|**Genetic Data**|Whole-genome or exome sequencing
48 +|**Neuroimaging Metadata**|MRI/PET acquisition parameters
70 70  
71 -* Location: GitHub Data Repository
72 -* Create a new folder under /data/ and include a dataset description.
73 -* For large datasets, contact project administrators before uploading.
74 -)))
75 -)))
76 -1. (((
77 -**Integrate Data into AI Models**
50 +=== **Upload Data to Neurodiagnoses** ===
78 78  
79 -* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts.
80 -* Standardize neuroimaging and biomarker formats using harmonization tools.
81 -* Utilize machine learning models to handle missing data and feature extraction.
82 -* Train AI models with newly integrated patient cohorts.
52 +**Option 1:** Upload to **EBRAINS Bucket** → [[Neurodiagnoses Data Storage>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]]
53 +**Option 2:** Contribute via **GitHub Repository** → [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]]
83 83  
84 -**Reference**: See docs/data_processing.md for detailed instructions.
85 -)))
55 +**For large datasets, please contact project administrators before uploading.**
86 86  
87 -**AI-Driven Biomarker Categorization**
57 +=== **Integrate Data into AI Models** ===
88 88  
89 -Neurodiagnoses employs advanced AI models for biomarker classification:
59 +Use **Jupyter Notebooks** on EBRAINS for **data preprocessing.**
60 +Standardize data using **harmonization tools.**
61 +Train AI models with **newly integrated datasets.**
90 90  
91 -|=**Model Type**|=**Application**
92 -|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases
93 -|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers
94 -|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data
63 +**Reference:** [[Data Processing Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]]
95 95  
96 -=== **Jupyter Integration with EBRAINS** ===
65 +----
97 97  
98 -=== **Overview** ===
67 +== **AI-Powered Annotation & Machine Learning Models** ==
99 99  
100 -Neurodiagnoses Open Source leverages **Jupyter Notebooks from EBRAINS** to facilitate neurodiagnostic research, biomarker analysis, and AI-driven data processing. This integration provides an interactive and reproducible environment for developing machine learning models, analyzing neuroimaging data, and exploring multimodal biomarkers. Jupyter integration in EBRAINS empowers **Neurodiagnoses Open Source** to: **Analyze MRI, EEG, and biomarker data efficiently**. ✅ **Train machine learning models with high-performance computing**. ✅ **Ensure transparency with interactive explainability tools**. ✅ **Enable collaborative neurodiagnostic research with reproducible notebooks**.
69 +Neurodiagnoses applies **advanced machine learning models** to classify CNS diseases, extract features from **biomarkers and neuroimaging**, and provide **AI-powered annotation.**
101 101  
102 -=== **Key Capabilities of Jupyter in Neurodiagnoses** ===
71 +=== **AI Model Categories** ===
103 103  
104 -==== **1. Neuroimaging Analysis (MRI, fMRI, PET)** ====
73 +|=**Model Type**|=**Function**|=**Example Algorithms**
74 +|**Probabilistic Diagnosis**|Assigns probability scores to multiple CNS disorders.|Random Forest, XGBoost, Bayesian Networks
75 +|**Tridimensional Diagnosis**|Classifies disorders based on Etiology, Biomarkers, and Neuroanatomical Correlations.|CNNs, Transformers, Autoencoders
76 +|**Biomarker Prediction**|Predicts missing biomarker values using regression.|KNN Imputation, Bayesian Estimation
77 +|**Neuroimaging Feature Extraction**|Extracts patterns from MRI, PET, EEG.|CNNs, Graph Neural Networks
78 +|**Clinical Decision Support**|Generates AI-driven diagnostic reports.|SHAP Explainability Tools
105 105  
106 -* **Preprocessing Pipelines:**
107 -** Use **Nipype, NiLearn, ANTs, and FreeSurfer** for structural and functional MRI analysis.
108 -** Skull stripping, segmentation, and registration of MRI scans.
109 -** Entropy-based slice selection for training deep learning models.
110 -* **Deep Learning for Neuroimaging:**
111 -** Implement **CNN-based models (ResNet, VGG16, Autoencoders)** for biomarker extraction.
112 -** Feature-based classification of **Alzheimer’s, Parkinson’s, and MCI** from neuroimaging data.
80 +**Reference:** [[AI Model Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/models.md]]
113 113  
114 -==== **2. EEG and MEG Signal Processing** ====
82 +----
115 115  
116 -* **Data Preprocessing & Artifact Removal:**
117 -** Use **MNE-Python** for filtering, ICA-based artifact rejection, and time-series normalization.
118 -** Extract frequency and time-domain features from EEG/MEG signals.
119 -* **Feature Engineering & Connectivity Analysis:**
120 -** Functional connectivity analysis using **coherence and phase synchronization metrics**.
121 -** Graph-theory-based EEG biomarkers for neurodegenerative disease classification.
122 -* **Deep Learning for EEG Analysis:**
123 -** Train LSTMs and CNNs for automatic EEG-based classification of MCI and cognitive decline.
84 +== **Clinical Decision Support & Tridimensional Diagnostic Framework** ==
124 124  
125 -==== **3. Machine Learning for Biomarker Discovery** ====
86 +Neurodiagnoses generates **structured AI reports** for clinicians, combining:
126 126  
127 -* **SHAP-based Explainability for Biomarkers:**
128 -** Use **Random Forest + SHAP** to rank the most predictive CSF, blood, and imaging biomarkers.
129 -** Generate SHAP summary plots to interpret the impact of individual biomarkers.
130 -* **Multi-Modal Feature Selection:**
131 -** Implement **Anchor-Graph Feature Selection** to combine MRI, EEG, and CSF data.
132 -** PCA and autoencoders for dimensionality reduction and feature extraction.
133 -* **Automated Risk Prediction Models:**
134 -** Train ensemble models combining **deep learning and classical ML algorithms**.
135 -** Apply **subject-level cross-validation** to prevent data leakage and ensure reproducibility.
88 +**Probabilistic Diagnosis:** AI-generated ranking of potential diagnoses.
89 +**Tridimensional Classification:** Standardized diagnostic reports based on:
136 136  
137 -==== **4. Computational Simulations & Virtual Brain Models** ====
91 +1. **Axis 1:** **Etiology** → Genetic, Autoimmune, Prion, Toxic, Vascular.
92 +1. **Axis 2:** **Molecular Markers** → CSF, Neuroinflammation, EEG biomarkers.
93 +1. **Axis 3:** **Neuroanatomoclinical Correlations** → MRI atrophy, PET.
138 138  
139 -* **Integration with The Virtual Brain (TVB):**
140 -** Simulate large-scale brain networks based on individual neuroimaging data.
141 -** Model the effect of neurodegenerative progression on brain activity.
142 -* **Cortical and Subcortical Connectivity Analysis:**
143 -** Generate connectivity matrices using diffusion MRI and functional MRI correlations.
144 -** Validate computational simulations with real patient data from EBRAINS datasets.
95 +**Reference:** [[Tridimensional Classification Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/classification.md]]
145 145  
146 -==== **5. Interactive Data Visualization & Reporting** ====
97 +----
147 147  
148 -* **Dynamic Plots & Dashboards:**
149 -** Use **Matplotlib, Seaborn, Plotly** for interactive visualizations of biomarkers.
150 -** Implement real-time MRI slice rendering and EEG signal visualization.
151 -* **Automated Report Generation:**
152 -** Generate **Jupyter-based PDF reports** summarizing key findings.
153 -** Export analysis results in JSON, CSV, and interactive web dashboards.
99 +== **Data Security, Compliance & Federated Learning** ==
154 154  
155 -=== **How to Use Neurodiagnoses with Jupyter in EBRAINS** ===
101 +✔ **Privacy-Preserving AI**: Implements **Federated Learning**, ensuring that patient data **never leaves** local institutions.
102 +✔ **Secure Data Access**: Data remains **stored in EBRAINS MIP servers** using **differential privacy techniques.**
103 +✔ **Ethical & GDPR Compliance**: Data-sharing agreements **must be signed** before use.
156 156  
157 -==== **1. Access EBRAINS Jupyter Environment** ====
105 +**Reference:** [[Data Protection & Federated Learning>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/security.md]]
158 158  
159 -1. Create an **EBRAINS account** at [[EBRAINS.eu>>url:https://ebrains.eu/]].
160 -1. Navigate to the **Collaboratory** and open the Jupyter Lab interface.
161 -1. Clone the Neurodiagnoses repository:
107 +----
162 162  
163 -{{{git clone https://github.com/neurodiagnoses
164 -cd neurodiagnoses
165 -pip install -r requirements.txt
166 -}}}
109 +== **Data Processing & Integration with Clinica.Run** ==
167 167  
168 -==== **2. Run Prebuilt Neurodiagnoses Notebooks** ====
111 +Neurodiagnoses now supports **Clinica.Run**, an **open-source neuroimaging platform** for **multimodal data processing.**
169 169  
170 -1. Open the **notebooks/** directory inside Jupyter.
171 -1. Run any of the available notebooks:
172 -1*. mri_biomarker_analysis.ipynb → Extracts MRI-based biomarkers.
173 -1*. eeg_preprocessing.ipynb → Cleans and processes EEG signals.
174 -1*. shap_biomarker_explainability.ipynb → Visualizes biomarker importance.
175 -1*. disease_risk_prediction.ipynb → Runs ML models for disease classification.
113 +=== **How It Works** ===
176 176  
177 -==== **3. Train Custom AI Models on EBRAINS HPC Resources** ====
115 +✔ **Neuroimaging Preprocessing**: MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines.**
116 +✔ **Automated Biomarker Extraction**: Extracts volumetric, metabolic, and functional biomarkers.
117 +✔ **Data Security & Compliance**: Clinica.Run is **GDPR & HIPAA-compliant.**
178 178  
179 -* Use EBRAINS **GPU and HPC clusters** for deep learning training:
119 +=== **Implementation Steps** ===
180 180  
181 -{{{from neurodiagnoses.models import train_cnn_model
182 -train_cnn_model(data_path='data/mri/', model_type='ResNet50')
183 -}}}
184 -* Save trained models for deployment:
121 +1. Install **Clinica.Run** dependencies.
122 +1. Configure **Clinica.Run pipeline** in clinica_run_config.json.
123 +1. Run **biomarker extraction pipelines** for AI-based diagnostics.
185 185  
186 -{{{model.save('models/neurodiagnoses_cnn.h5')
187 -}}}
125 +**Reference:** [[Clinica.Run Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/clinica_run.md]]
188 188  
189 -For further developments, contribute to the **[[Neurodiagnoses GitHub Repository>>url:https://github.com/neurodiagnoses]]**.
127 +----
190 190  
191 -**Collaboration & Partnerships**
129 +== **Collaborative Development & Research** ==
192 192  
193 -Neurodiagnoses actively seeks partnerships with data providers to:
131 +**We Use GitHub to Develop AI Models & Store Research Data**
194 194  
195 -* Enable API-based data integration for real-time processing.
196 -* Co-develop harmonized AI-ready datasets with standardized annotations.
197 -* Secure funding opportunities through joint grant applications.
133 +* **GitHub Repository:** AI model training scripts.
134 +* **GitHub Issues:** Tracks ongoing research questions.
135 +* **GitHub Wiki:** Project documentation & user guides.
198 198  
199 -**Interested in Partnering?**
137 +**We Use EBRAINS for Data & Collaboration**
200 200  
201 -If you represent a research consortium or database provider, reach out to explore data-sharing agreements.
139 +* **EBRAINS Buckets:** Large-scale neuroimaging and biomarker storage.
140 +* **EBRAINS Jupyter Notebooks:** Cloud-based AI model execution.
141 +* **EBRAINS Wiki:** Research documentation and updates.
202 202  
203 -**Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]
143 +**Join the Project Forum:** [[GitHub Discussions>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]
204 204  
205 -**Final Notes**
145 +----
206 206  
207 -Neurodiagnoses AI is committed to advancing the integration of artificial intelligence in neurodiagnostic processes. By continuously expanding our data ecosystem and incorporating standardized biomarker classifications through the Neuromarker ontology, we aim to enhance cross-disease AI training and improve diagnostic accuracy across neurodegenerative disorders.
147 +**For Additional Documentation:**
208 208  
209 -We encourage researchers and institutions to contribute new datasets and methodologies to further enrich this collaborative platform. Your participation is vital in driving innovation and fostering a deeper understanding of complex neurological conditions.
149 +* **GitHub Repository:** [[Neurodiagnoses AI Models>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]]
150 +* **EBRAINS Wiki:** [[Neurodiagnoses Research Collaboration>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]]
210 210  
211 -**For additional technical documentation and collaboration opportunities:**
152 +----
212 212  
213 -* **GitHub Repository:** [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]]
214 -* **EBRAINS Collaboration Page:** [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]]
215 -
216 -If you encounter any issues during data integration or have suggestions for improvement, please open a GitHub Issue or consult the EBRAINS Neurodiagnoses Forum. Together, we can advance the field of neurodiagnostics and contribute to better patient outcomes.
154 +**Neurodiagnoses is Open for Contributions – Join Us Today!**
workflow neurodiagnoses.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.manuelmenendez
Size
... ... @@ -1,1 +1,0 @@
1 -157.5 KB
Content