Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 28.1
edited by manuelmenendez
on 2025/03/14 08:31
on 2025/03/14 08:31
Change comment:
There is no comment for this version
To version 18.1
edited by manuelmenendez
on 2025/02/13 12:52
on 2025/02/13 12:52
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,216 +1,133 @@ 1 - **NeurodiagnosesAI**is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. It encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the**GeneralizedNeuro Biomarker Ontology Categorization (Neuromarker) **and** Disease Knowledge Transfer (DKT)**, which standardizes disease and biomarker classification across all CNS diseases, facilitating cross-disease AI training.1 +== **Overview** == 2 2 3 - **Neuromarker:GeneralizedBiomarkerOntology**3 +Neurodiagnoses develops a tridimensional diagnostic framework for CNS diseases, incorporating AI-powered annotation tools to improve interpretability, standardization, and clinical utility. The methodology integrates multi-modal data, including genetic, neuroimaging, neurophysiological, and biomarker datasets, and applies machine learning models to generate structured, explainable diagnostic outputs. 4 4 5 - Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration.5 +---- 6 6 7 -** RecommendedSoftware**7 +== **How to Use External Databases in Neurodiagnoses** == 8 8 9 -The reisasuiteofsoftwarethatanhelpimplementheworkflowneededinNeurodiagnoses.Findlistof recommendations[[here>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/recommended_software]].9 +To enhance the accuracy of our diagnostic models, Neurodiagnoses integrates data from multiple biomedical and neurological research databases. If you are a researcher, follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework. 10 10 11 -** CoreBiomarkerCategories**11 +=== **Potential Data Sources** === 12 12 13 - Within theNeurodiagnosesAIframework,biomarkersarecategorizedasfollows:13 +Neurodiagnoses maintains an updated list of potential biomedical databases relevant to neurodegenerative diseases. 14 14 15 -|=**Category**|=**Description** 16 -|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 17 -|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 18 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL, autoantiboides 19 -|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 20 -|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 21 -|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 22 -|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 23 -|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 15 +* Reference: [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 24 24 25 -** Integrating ExternalDatabases intoNeurodiagnoses**17 +=== **1. Register for Access** === 26 26 27 - Toenhancediagnosticprecision, NeurodiagnosesAIincorporatesdatafrommultiplebiomedicalandneurological research databases.Researchers canintegrate externaldatasets by following these steps:19 +Each external database requires individual registration and access approval. Follow the official guidelines of each database provider. 28 28 29 - 1.(((30 -* *Register forAccess**21 +* Ensure that you have completed all ethical approvals and data access agreements before integrating datasets into Neurodiagnoses. 22 +* Some repositories require a Data Usage Agreement (DUA) before downloading sensitive medical data. 31 31 32 -* Each external database requires individual registration and access approval. 33 -* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses. 34 -* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data. 35 -))) 36 -1. ((( 37 -**Download & Prepare Data** 24 +=== **2. Download & Prepare Data** === 38 38 39 -* Download datasets while adhering to database usage policies. 40 -* ((( 41 -Ensure files meet Neurodiagnoses format requirements: 26 +Once access is granted, download datasets while complying with data usage policies. Ensure that the files meet Neurodiagnoses’ format requirements for smooth integration. 42 42 43 -|=**Data Type**|=**Accepted Formats** 44 -|**Tabular Data**|.csv, .tsv 45 -|**Neuroimaging**|.nii, .dcm 46 -|**Genomic Data**|.fasta, .vcf 47 -|**Clinical Metadata**|.json, .xml 48 -))) 49 -* ((( 50 -**Mandatory Fields for Integration**: 28 +==== **Supported File Formats** ==== 51 51 52 -* Subject ID: Unique patient identifier 53 -* Diagnosis: Standardized disease classification 54 -* Biomarkers: CSF, plasma, or imaging biomarkers 55 -* Genetic Data: Whole-genome or exome sequencing 56 -* Neuroimaging Metadata: MRI/PET acquisition parameters 57 -))) 58 -))) 59 -1. ((( 60 -**Upload Data to Neurodiagnoses** 30 +* Tabular Data: .csv, .tsv 31 +* Neuroimaging Data: .nii, .dcm 32 +* Genomic Data: .fasta, .vcf 33 +* Clinical Metadata: .json, .xml 61 61 35 +==== **Mandatory Fields for Integration** ==== 36 + 37 +|=Field Name|=Description 38 +|Subject ID|Unique patient identifier 39 +|Diagnosis|Standardized disease classification 40 +|Biomarkers|CSF, plasma, or imaging biomarkers 41 +|Genetic Data|Whole-genome or exome sequencing 42 +|Neuroimaging Metadata|MRI/PET acquisition parameters 43 + 44 +=== **3. Upload Data to Neurodiagnoses** === 45 + 46 +Once preprocessed, data can be uploaded to EBRAINS or GitHub. 47 + 62 62 * ((( 63 63 **Option 1: Upload to EBRAINS Bucket** 64 64 65 -* Location: EBRAINS Neurodiagnoses Bucket 51 +* Location: [[EBRAINS Neurodiagnoses Bucket>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]] 66 66 * Ensure correct metadata tagging before submission. 67 67 ))) 68 68 * ((( 69 69 **Option 2: Contribute via GitHub Repository** 70 70 71 -* Location: GitHub Data Repository 72 -* Create a new folder under /data/ and include a dataset description. 73 -* For large datasets, contact project administrators before uploading. 57 +* Location: [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]] 58 +* Create a new folder under /data/ and include dataset description. 74 74 ))) 75 -))) 76 -1. ((( 77 -**Integrate Data into AI Models** 78 78 79 -* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 80 -* Standardize neuroimaging and biomarker formats using harmonization tools. 81 -* Utilize machine learning models to handle missing data and feature extraction. 82 -* Train AI models with newly integrated patient cohorts. 61 +//Note: For large datasets, please contact the project administrators before uploading.// 83 83 84 -**Reference**: See docs/data_processing.md for detailed instructions. 85 -))) 63 +=== **4. Integrate Data into AI Models** === 86 86 87 - **AI-DrivenBiomarkerCategorization**65 +Once uploaded, datasets must be harmonized and formatted before AI model training. 88 88 89 - Neurodiagnosesemploysadvanced AI modelsforbiomarkerclassification:67 +==== **Steps for Data Integration** ==== 90 90 91 -|=**Model Type**|=**Application** 92 -|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 93 -|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 94 -|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 69 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 70 +* Standardize neuroimaging and biomarker formats using harmonization tools. 71 +* Use machine learning models to handle missing data and feature extraction. 72 +* Train AI models with newly integrated patient cohorts. 73 +* Reference: [[Detailed instructions can be found in docs/data_processing.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]]. 95 95 96 - === **Jupyter Integration with EBRAINS** ===75 +---- 97 97 98 -== =**Overview** ===77 +== **Database Sources Table** == 99 99 100 - NeurodiagnosesOpen Source leverages**Jupyter Notebooks from EBRAINS** to facilitate neurodiagnostic research, biomarkeranalysis, and AI-drivendata processing.This integration provides an interactive and reproducible environment for developing machine learning models, analyzing neuroimaging data, and exploring multimodal biomarkers. Jupyter integration in EBRAINS empowers **Neurodiagnoses Open Source**to:✅ **Analyze MRI, EEG, and biomarker data efficiently**. ✅ **Train machine learning modelswith high-performance computing**.✅ **Ensure transparency with interactive explainability tools**. ✅ **Enable collaborative neurodiagnostic research with reproducible notebooks**.79 +=== **Where to Insert This** === 101 101 102 -=== **Key Capabilities of Jupyter in Neurodiagnoses** === 81 +* GitHub: [[docs/data_sources.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_sources.md]] 82 +* EBRAINS Wiki: Collabs/neurodiagnoses/Data Sources 103 103 104 -=== =**1.Neuroimaging Analysis(MRI, fMRI, PET)** ====84 +=== **Key Databases for Neurodiagnoses** === 105 105 106 -* **Preprocessing Pipelines:** 107 -** Use **Nipype, NiLearn, ANTs, and FreeSurfer** for structural and functional MRI analysis. 108 -** Skull stripping, segmentation, and registration of MRI scans. 109 -** Entropy-based slice selection for training deep learning models. 110 -* **Deep Learning for Neuroimaging:** 111 -** Implement **CNN-based models (ResNet, VGG16, Autoencoders)** for biomarker extraction. 112 -** Feature-based classification of **Alzheimer’s, Parkinson’s, and MCI** from neuroimaging data. 86 +|=Database|=Focus Area|=Data Type|=Access Link 87 +|ADNI|Alzheimer's Disease|MRI, PET, CSF, cognitive tests|ADNI 88 +|PPMI|Parkinson’s Disease|Imaging, biospecimens|[[PPMI>>url:https://www.ppmi-info.org/]] 89 +|GP2|Genetic Data for PD|Whole-genome sequencing|[[GP2>>url:https://gp2.org/]] 90 +|Enroll-HD|Huntington’s Disease|Clinical, genetic, imaging|[[Enroll-HD>>url:https://enroll-hd.org/]] 91 +|GAAIN|Alzheimer's & Cognitive Decline|Multi-source data aggregation|[[GAAIN>>url:https://www.gaain.org/]] 92 +|UK Biobank|Population-wide studies|Genetic, imaging, health records|[[UK Biobank>>url:https://www.ukbiobank.ac.uk/]] 93 +|DPUK|Dementia & Aging|Imaging, genetics, lifestyle factors|[[DPUK>>url:https://www.dementiasplatform.uk/]] 94 +|PRION Registry|Prion Diseases|Clinical and genetic data|[[PRION Registry>>url:https://www.prionalliance.org/]] 95 +|DECIPHER|Rare Genetic Disorders|Genomic variants|DECIPHER 113 113 114 - ====**2.EEGandMEGSignal Processing** ====97 +If you know a relevant dataset, submit a proposal in [[GitHub Issues>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]]. 115 115 116 -* **Data Preprocessing & Artifact Removal:** 117 -** Use **MNE-Python** for filtering, ICA-based artifact rejection, and time-series normalization. 118 -** Extract frequency and time-domain features from EEG/MEG signals. 119 -* **Feature Engineering & Connectivity Analysis:** 120 -** Functional connectivity analysis using **coherence and phase synchronization metrics**. 121 -** Graph-theory-based EEG biomarkers for neurodegenerative disease classification. 122 -* **Deep Learning for EEG Analysis:** 123 -** Train LSTMs and CNNs for automatic EEG-based classification of MCI and cognitive decline. 99 +---- 124 124 125 -== ==**3. Machine LearningforBiomarkerDiscovery** ====101 +== **Collaboration & Partnerships** == 126 126 127 -* **SHAP-based Explainability for Biomarkers:** 128 -** Use **Random Forest + SHAP** to rank the most predictive CSF, blood, and imaging biomarkers. 129 -** Generate SHAP summary plots to interpret the impact of individual biomarkers. 130 -* **Multi-Modal Feature Selection:** 131 -** Implement **Anchor-Graph Feature Selection** to combine MRI, EEG, and CSF data. 132 -** PCA and autoencoders for dimensionality reduction and feature extraction. 133 -* **Automated Risk Prediction Models:** 134 -** Train ensemble models combining **deep learning and classical ML algorithms**. 135 -** Apply **subject-level cross-validation** to prevent data leakage and ensure reproducibility. 103 +=== **Where to Insert This** === 136 136 137 -==== **4. Computational Simulations & Virtual Brain Models** ==== 105 +* GitHub: [[docs/collaboration.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/collaboration.md]] 106 +* EBRAINS Wiki: Collabs/neurodiagnoses/Collaborations 138 138 139 -* **Integration with The Virtual Brain (TVB):** 140 -** Simulate large-scale brain networks based on individual neuroimaging data. 141 -** Model the effect of neurodegenerative progression on brain activity. 142 -* **Cortical and Subcortical Connectivity Analysis:** 143 -** Generate connectivity matrices using diffusion MRI and functional MRI correlations. 144 -** Validate computational simulations with real patient data from EBRAINS datasets. 108 +=== **Partnering with Data Providers** === 145 145 146 - ====**5. InteractiveDataVisualization&Reporting**====110 +Beyond using existing datasets, Neurodiagnoses seeks partnerships with data repositories to: 147 147 148 -* **Dynamic Plots & Dashboards:** 149 -** Use **Matplotlib, Seaborn, Plotly** for interactive visualizations of biomarkers. 150 -** Implement real-time MRI slice rendering and EEG signal visualization. 151 -* **Automated Report Generation:** 152 -** Generate **Jupyter-based PDF reports** summarizing key findings. 153 -** Export analysis results in JSON, CSV, and interactive web dashboards. 154 - 155 -=== **How to Use Neurodiagnoses with Jupyter in EBRAINS** === 156 - 157 -==== **1. Access EBRAINS Jupyter Environment** ==== 158 - 159 -1. Create an **EBRAINS account** at [[EBRAINS.eu>>url:https://ebrains.eu/]]. 160 -1. Navigate to the **Collaboratory** and open the Jupyter Lab interface. 161 -1. Clone the Neurodiagnoses repository: 162 - 163 -{{{git clone https://github.com/neurodiagnoses 164 -cd neurodiagnoses 165 -pip install -r requirements.txt 166 -}}} 167 - 168 -==== **2. Run Prebuilt Neurodiagnoses Notebooks** ==== 169 - 170 -1. Open the **notebooks/** directory inside Jupyter. 171 -1. Run any of the available notebooks: 172 -1*. mri_biomarker_analysis.ipynb → Extracts MRI-based biomarkers. 173 -1*. eeg_preprocessing.ipynb → Cleans and processes EEG signals. 174 -1*. shap_biomarker_explainability.ipynb → Visualizes biomarker importance. 175 -1*. disease_risk_prediction.ipynb → Runs ML models for disease classification. 176 - 177 -==== **3. Train Custom AI Models on EBRAINS HPC Resources** ==== 178 - 179 -* Use EBRAINS **GPU and HPC clusters** for deep learning training: 180 - 181 -{{{from neurodiagnoses.models import train_cnn_model 182 -train_cnn_model(data_path='data/mri/', model_type='ResNet50') 183 -}}} 184 -* Save trained models for deployment: 185 - 186 -{{{model.save('models/neurodiagnoses_cnn.h5') 187 -}}} 188 - 189 -For further developments, contribute to the **[[Neurodiagnoses GitHub Repository>>url:https://github.com/neurodiagnoses]]**. 190 - 191 -**Collaboration & Partnerships** 192 - 193 -Neurodiagnoses actively seeks partnerships with data providers to: 194 - 195 -* Enable API-based data integration for real-time processing. 112 +* Enable direct API-based data integration for real-time processing. 196 196 * Co-develop harmonized AI-ready datasets with standardized annotations. 197 197 * Secure funding opportunities through joint grant applications. 198 198 199 -**Interested in Partnering?** 116 +=== **Interested in Partnering?** === 200 200 201 201 If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 202 202 203 -* *Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]120 +* Contact: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 204 204 205 - **Final Notes**122 +---- 206 206 207 - NeurodiagnosesAIis committed to advancing the integration of artificialintelligence in neurodiagnostic processes. By continuously expanding our data ecosystem and incorporating standardized biomarker classifications through theNeuromarker ontology, weaim to enhance cross-diseaseAI training and improve diagnostic accuracy across neurodegenerative disorders.124 +== **Final Notes** == 208 208 209 - Weencourage researchersand institutionsto contributenewdatasetsand methodologies tofurtherenrichthiscollaborativeplatform. Yourparticipation isvitalindrivinginnovationand fostering a deeperunderstandingof complex neurological conditions.126 +Neurodiagnoses continuously expands its data ecosystem to support AI-driven clinical decision-making. Researchers and institutions are encouraged to contribute new datasets and methodologies. 210 210 211 - **For additional technical documentationand collaboration opportunities:**128 +For additional technical documentation: 212 212 213 -* **GitHub Repository:** [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]]214 -* **EBRAINS Collaboration Page:** [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]]130 +* [[GitHub Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]] 131 +* [[EBRAINS Collaboration Page>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]] 215 215 216 -If you enc ounteranyissuesduring data integrationor have suggestions for improvement,pleaseopen a GitHub Issueor consultEBRAINS NeurodiagnosesForum.Together,wecanadvancethefieldof neurodiagnosticsand contribute to better patient outcomes.133 +If you experience issues integrating data, open a [[GitHub Issue>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]] or consult the EBRAINS Neurodiagnoses Forum.
- workflow neurodiagnoses.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.manuelmenendez - Size
-
... ... @@ -1,1 +1,0 @@ 1 -157.5 KB - Content