Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 28.1
edited by manuelmenendez
on 2025/03/14 08:31
on 2025/03/14 08:31
Change comment:
There is no comment for this version
To version 19.1
edited by manuelmenendez
on 2025/02/14 13:57
on 2025/02/14 13:57
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,216 +1,207 @@ 1 -**Neurodiagnoses AI **is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of centralnervous system (CNS) disorders. It encompasses a broader spectrum of neurologicalconditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights.Akeyfeatureof this frameworkis the incorporation of the **GeneralizedNeuroBiomarker Ontology Categorization(Neuromarker) **and** Disease Knowledge Transfer (DKT)**, whichstandardizesdisease and biomarkerclassificationacross all CNS diseases, facilitating cross-disease AI training.1 +**# Neurodiagnoses AI: Multimodal AI for Neurodiagnostic Predictions** 2 2 3 -**Neuromarker: Generalized Biomarker Ontology** 3 +## **Project Overview** 4 +Neurodiagnoses AI implements AI-driven diagnostic and prognostic models for central nervous system (CNS) disorders, adapting the Florey Dementia Index (FDI) methodology to a broader set of neurological conditions. The approach integrates **multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics) and employs **machine learning models** to provide **explainable, real-time diagnostic insights**.## 4 4 5 -Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration. 6 +## **How to Use External Databases in Neurodiagnoses** 7 +To enhance diagnostic accuracy, Neurodiagnoses integrates data from multiple biomedical and neurological research databases. Researchers can follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework.## 6 6 7 -**Recommended Software** 9 +### **Potential Data Sources** 10 +Neurodiagnoses maintains an updated list of potential biomedical databases relevant to neurodegenerative diseases. ## 8 8 9 -There is a suite of software that can help implement the workflow needed in Neurodiagnoses. Find a list of recommendations [[here>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/recommended_software]]. 12 +**Reference: List of Potential Databases** 13 +- **ADNI**: Alzheimer's Disease data ([ADNI](https://adni.loni.usc.edu)) 14 +- **PPMI**: Parkinson’s Disease Imaging and biospecimens ([PPMI](https://www.ppmi-info.org)) 15 +- **GP2**: Whole-genome sequencing for PD ([GP2](https://gp2.org)) 16 +- **Enroll-HD**: Huntington’s Disease Clinical and genetic data ([Enroll-HD](https://www.enroll-hd.org)) 17 +- **GAAIN**: Multi-source Alzheimer’s data aggregation ([GAAIN](https://gaain.org)) 18 +- **UK Biobank**: Population-wide genetic, imaging, and health records ([UK Biobank](https://www.ukbiobank.ac.uk)) 19 +- **DPUK**: Dementia and Aging data ([DPUK](https://www.dementiasplatform.uk)) 20 +- **PRION Registry**: Prion Diseases clinical and genetic data ([PRION Registry](https://prionregistry.org)) 21 +- **DECIPHER**: Rare genetic disorder genomic variants ([DECIPHER](https://decipher.sanger.ac.uk)) 10 10 11 -**Core Biomarker Categories** 23 +### **1. Register for Access** 24 +- Each external database requires **individual registration** and access approval. 25 +- Ensure compliance with **ethical approvals** and **data usage agreements** before integrating datasets into Neurodiagnoses. 26 +- Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data.## 12 12 13 -Within the Neurodiagnoses AI framework, biomarkers are categorized as follows: 28 +### **2. Download & Prepare Data** 29 +- Download datasets while adhering to database usage policies. 30 +- Ensure files meet **Neurodiagnoses format requirements**: 31 + - **Tabular Data**: `.csv`, `.tsv` 32 + - **Neuroimaging Data**: `.nii`, `.dcm` 33 + - **Genomic Data**: `.fasta`, `.vcf` 34 + - **Clinical Metadata**: `.json`, `.xml`## 14 14 15 -|=**Category**|=**Description** 16 -|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 17 -|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 18 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL, autoantiboides 19 -|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 20 -|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 21 -|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 22 -|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 23 -|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 36 +- **Mandatory Fields for Integration**: 37 + - **Subject ID**: Unique patient identifier 38 + - **Diagnosis**: Standardized disease classification 39 + - **Biomarkers**: CSF, plasma, or imaging biomarkers 40 + - **Genetic Data**: Whole-genome or exome sequencing 41 + - **Neuroimaging Metadata**: MRI/PET acquisition parameters 24 24 25 -**Integrating External Databases into Neurodiagnoses** 43 +### **3. Upload Data to Neurodiagnoses** 44 +**Option 1: Upload to EBRAINS Bucket** 45 +- Location: **EBRAINS Neurodiagnoses Bucket** 46 +- Ensure correct **metadata tagging** before submission.## 26 26 27 -To enhance diagnostic precision, Neurodiagnoses AI incorporates data from multiple biomedical and neurological research databases. Researchers can integrate external datasets by following these steps: 48 + **Option 2: Contribute via GitHub Repository** 49 +- Location: **GitHub Data Repository** 50 +- Create a new folder under `/data/` and include a **dataset description**. 51 +- For large datasets, contact project administrators before uploading. 28 28 29 -1. ((( 30 -**Register for Access** 53 +### **4. Integrate Data into AI Models** 54 +- Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**. 55 +- Standardize **neuroimaging and biomarker formats** using harmonization tools. 56 +- Use **machine learning models** to handle missing data and feature extraction. 57 +- Train AI models with **newly integrated patient cohorts**.## 31 31 32 -* Each external database requires individual registration and access approval. 33 -* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses. 34 -* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data. 35 -))) 36 -1. ((( 37 -**Download & Prepare Data** 59 +**Reference**: See `docs/data_processing.md` for detailed instructions. 38 38 39 -* Download datasets while adhering to database usage policies. 40 -* ((( 41 -Ensure files meet Neurodiagnoses format requirements: 61 +## **Collaboration & Partnerships**## 62 +# **Partnering with Data Providers** 63 +Neurodiagnoses seeks partnerships with data repositories to: 64 +- Enable **API-based data integration** for real-time processing. 65 +- Co-develop **harmonized AI-ready datasets** with standardized annotations. 66 +- Secure **funding opportunities** through joint grant applications. 42 42 43 -|=**Data Type**|=**Accepted Formats** 44 -|**Tabular Data**|.csv, .tsv 45 -|**Neuroimaging**|.nii, .dcm 46 -|**Genomic Data**|.fasta, .vcf 47 -|**Clinical Metadata**|.json, .xml 48 -))) 49 -* ((( 50 -**Mandatory Fields for Integration**: 68 +**Interested in Partnering?** 69 +- If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 70 +- **Contact**: info@neurodiagnoses.com 51 51 52 -* Subject ID: Unique patient identifier 53 -* Diagnosis: Standardized disease classification 54 -* Biomarkers: CSF, plasma, or imaging biomarkers 55 -* Genetic Data: Whole-genome or exome sequencing 56 -* Neuroimaging Metadata: MRI/PET acquisition parameters 57 -))) 58 -))) 59 -1. ((( 60 -**Upload Data to Neurodiagnoses** 72 +## **Final Notes** 73 +Neurodiagnoses continuously expands its data ecosystem to support AI-driven clinical decision-making. Researchers and institutions are encouraged to contribute **new datasets and methodologies**.## 61 61 62 -* ((( 63 -**Option 1: Upload to EBRAINS Bucket** 75 +For additional technical documentation: 76 +- **GitHub Repository**: [Neurodiagnoses GitHub](https://github.com/neurodiagnoses) 77 +- **EBRAINS Collaboration Page**: [EBRAINS Neurodiagnoses](https://ebrains.eu/collabs/neurodiagnoses) 64 64 65 -* Location: EBRAINS Neurodiagnoses Bucket 66 -* Ensure correct metadata tagging before submission. 67 -))) 68 -* ((( 69 -**Option 2: Contribute via GitHub Repository** 79 +If you experience issues integrating data, **open a GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**. 70 70 71 -* Location: GitHub Data Repository 72 -* Create a new folder under /data/ and include a dataset description. 73 -* For large datasets, contact project administrators before uploading. 74 -))) 75 -))) 76 -1. ((( 77 -**Integrate Data into AI Models** 81 +== **How to Use External Databases in Neurodiagnoses** == 78 78 79 -* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 80 -* Standardize neuroimaging and biomarker formats using harmonization tools. 81 -* Utilize machine learning models to handle missing data and feature extraction. 82 -* Train AI models with newly integrated patient cohorts. 83 +To enhance the accuracy of our diagnostic models, Neurodiagnoses integrates data from multiple biomedical and neurological research databases. If you are a researcher, follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework. 83 83 84 -**Reference**: See docs/data_processing.md for detailed instructions. 85 -))) 85 +=== **Potential Data Sources** === 86 86 87 - **AI-DrivenBiomarkerCategorization**87 +Neurodiagnoses maintains an updated list of potential biomedical databases relevant to neurodegenerative diseases. 88 88 89 - Neurodiagnoses employsadvanced AI modelsforbiomarkerclassification:89 +* Reference: [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 90 90 91 -|=**Model Type**|=**Application** 92 -|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 93 -|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 94 -|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 91 +=== **1. Register for Access** === 95 95 96 - ===**JupyterIntegration withEBRAINS**===93 +Each external database requires individual registration and access approval. Follow the official guidelines of each database provider. 97 97 98 -=== **Overview** === 95 +* Ensure that you have completed all ethical approvals and data access agreements before integrating datasets into Neurodiagnoses. 96 +* Some repositories require a Data Usage Agreement (DUA) before downloading sensitive medical data. 99 99 100 - NeurodiagnosesOpen Source leverages**Jupyter Notebooks from EBRAINS** to facilitate neurodiagnostic research, biomarker analysis, and AI-driven data processing.This integration provides an interactive and reproducible environment for developing machine learning models, analyzing neuroimaging data, and exploring multimodal biomarkers. Jupyter integration in EBRAINS empowers **Neurodiagnoses Open Source** to: ✅ **Analyze MRI, EEG, and biomarkerdataefficiently**.✅ **Train machinelearning models with high-performance computing**. ✅ **Ensuretransparency with interactive explainability tools**.✅ **Enable collaborative neurodiagnostic research with reproducible notebooks**.98 +=== **2. Download & Prepare Data** === 101 101 102 - ===**KeyCapabilitiesof JupyterinNeurodiagnoses**===100 +Once access is granted, download datasets while complying with data usage policies. Ensure that the files meet Neurodiagnoses’ format requirements for smooth integration. 103 103 104 -==== ** 1. Neuroimaging Analysis (MRI, fMRI, PET)** ====102 +==== **Supported File Formats** ==== 105 105 106 -* **Preprocessing Pipelines:** 107 -** Use **Nipype, NiLearn, ANTs, and FreeSurfer** for structural and functional MRI analysis. 108 -** Skull stripping, segmentation, and registration of MRI scans. 109 -** Entropy-based slice selection for training deep learning models. 110 -* **Deep Learning for Neuroimaging:** 111 -** Implement **CNN-based models (ResNet, VGG16, Autoencoders)** for biomarker extraction. 112 -** Feature-based classification of **Alzheimer’s, Parkinson’s, and MCI** from neuroimaging data. 104 +* Tabular Data: .csv, .tsv 105 +* Neuroimaging Data: .nii, .dcm 106 +* Genomic Data: .fasta, .vcf 107 +* Clinical Metadata: .json, .xml 113 113 114 -==== ** 2. EEGandMEG SignalProcessing** ====109 +==== **Mandatory Fields for Integration** ==== 115 115 116 -* **Data Preprocessing & Artifact Removal:** 117 -** Use **MNE-Python** for filtering, ICA-based artifact rejection, and time-series normalization. 118 -** Extract frequency and time-domain features from EEG/MEG signals. 119 -* **Feature Engineering & Connectivity Analysis:** 120 -** Functional connectivity analysis using **coherence and phase synchronization metrics**. 121 -** Graph-theory-based EEG biomarkers for neurodegenerative disease classification. 122 -* **Deep Learning for EEG Analysis:** 123 -** Train LSTMs and CNNs for automatic EEG-based classification of MCI and cognitive decline. 111 +|=Field Name|=Description 112 +|Subject ID|Unique patient identifier 113 +|Diagnosis|Standardized disease classification 114 +|Biomarkers|CSF, plasma, or imaging biomarkers 115 +|Genetic Data|Whole-genome or exome sequencing 116 +|Neuroimaging Metadata|MRI/PET acquisition parameters 124 124 125 -=== =**3.MachineLearningforBiomarkerDiscovery** ====118 +=== **3. Upload Data to Neurodiagnoses** === 126 126 127 -* **SHAP-based Explainability for Biomarkers:** 128 -** Use **Random Forest + SHAP** to rank the most predictive CSF, blood, and imaging biomarkers. 129 -** Generate SHAP summary plots to interpret the impact of individual biomarkers. 130 -* **Multi-Modal Feature Selection:** 131 -** Implement **Anchor-Graph Feature Selection** to combine MRI, EEG, and CSF data. 132 -** PCA and autoencoders for dimensionality reduction and feature extraction. 133 -* **Automated Risk Prediction Models:** 134 -** Train ensemble models combining **deep learning and classical ML algorithms**. 135 -** Apply **subject-level cross-validation** to prevent data leakage and ensure reproducibility. 120 +Once preprocessed, data can be uploaded to EBRAINS or GitHub. 136 136 137 -==== **4. Computational Simulations & Virtual Brain Models** ==== 122 +* ((( 123 +**Option 1: Upload to EBRAINS Bucket** 138 138 139 -* **Integration with The Virtual Brain (TVB):** 140 -** Simulate large-scale brain networks based on individual neuroimaging data. 141 -** Model the effect of neurodegenerative progression on brain activity. 142 -* **Cortical and Subcortical Connectivity Analysis:** 143 -** Generate connectivity matrices using diffusion MRI and functional MRI correlations. 144 -** Validate computational simulations with real patient data from EBRAINS datasets. 125 +* Location: [[EBRAINS Neurodiagnoses Bucket>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]] 126 +* Ensure correct metadata tagging before submission. 127 +))) 128 +* ((( 129 +**Option 2: Contribute via GitHub Repository** 145 145 146 -==== **5. Interactive Data Visualization & Reporting** ==== 131 +* Location: [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]] 132 +* Create a new folder under /data/ and include dataset description. 133 +))) 147 147 148 -* **Dynamic Plots & Dashboards:** 149 -** Use **Matplotlib, Seaborn, Plotly** for interactive visualizations of biomarkers. 150 -** Implement real-time MRI slice rendering and EEG signal visualization. 151 -* **Automated Report Generation:** 152 -** Generate **Jupyter-based PDF reports** summarizing key findings. 153 -** Export analysis results in JSON, CSV, and interactive web dashboards. 135 +//Note: For large datasets, please contact the project administrators before uploading.// 154 154 155 -=== ** Howto UseNeurodiagnoseswithJupyterinEBRAINS** ===137 +=== **4. Integrate Data into AI Models** === 156 156 157 - ====**1.AccessEBRAINS JupyterEnvironment**====139 +Once uploaded, datasets must be harmonized and formatted before AI model training. 158 158 159 -1. Create an **EBRAINS account** at [[EBRAINS.eu>>url:https://ebrains.eu/]]. 160 -1. Navigate to the **Collaboratory** and open the Jupyter Lab interface. 161 -1. Clone the Neurodiagnoses repository: 141 +==== **Steps for Data Integration** ==== 162 162 163 -{{{git clone https://github.com/neurodiagnoses 164 -cd neurodiagnoses 165 -pip install -r requirements.txt 166 -}}} 143 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 144 +* Standardize neuroimaging and biomarker formats using harmonization tools. 145 +* Use machine learning models to handle missing data and feature extraction. 146 +* Train AI models with newly integrated patient cohorts. 147 +* Reference: [[Detailed instructions can be found in docs/data_processing.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]]. 167 167 168 - ==== **2. Run Prebuilt Neurodiagnoses Notebooks** ====149 +---- 169 169 170 -1. Open the **notebooks/** directory inside Jupyter. 171 -1. Run any of the available notebooks: 172 -1*. mri_biomarker_analysis.ipynb → Extracts MRI-based biomarkers. 173 -1*. eeg_preprocessing.ipynb → Cleans and processes EEG signals. 174 -1*. shap_biomarker_explainability.ipynb → Visualizes biomarker importance. 175 -1*. disease_risk_prediction.ipynb → Runs ML models for disease classification. 151 +== **Database Sources Table** == 176 176 177 -=== =**3. TrainCustomAIModels onEBRAINS HPC Resources** ====153 +=== **Where to Insert This** === 178 178 179 -* Use EBRAINS **GPU and HPC clusters** for deep learning training: 155 +* GitHub: [[docs/data_sources.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_sources.md]] 156 +* EBRAINS Wiki: Collabs/neurodiagnoses/Data Sources 180 180 181 -{{{from neurodiagnoses.models import train_cnn_model 182 -train_cnn_model(data_path='data/mri/', model_type='ResNet50') 183 -}}} 184 -* Save trained models for deployment: 158 +=== **Key Databases for Neurodiagnoses** === 185 185 186 -{{{model.save('models/neurodiagnoses_cnn.h5') 187 -}}} 160 +|=Database|=Focus Area|=Data Type|=Access Link 161 +|ADNI|Alzheimer's Disease|MRI, PET, CSF, cognitive tests|ADNI 162 +|PPMI|Parkinson’s Disease|Imaging, biospecimens|[[PPMI>>url:https://www.ppmi-info.org/]] 163 +|GP2|Genetic Data for PD|Whole-genome sequencing|[[GP2>>url:https://gp2.org/]] 164 +|Enroll-HD|Huntington’s Disease|Clinical, genetic, imaging|[[Enroll-HD>>url:https://enroll-hd.org/]] 165 +|GAAIN|Alzheimer's & Cognitive Decline|Multi-source data aggregation|[[GAAIN>>url:https://www.gaain.org/]] 166 +|UK Biobank|Population-wide studies|Genetic, imaging, health records|[[UK Biobank>>url:https://www.ukbiobank.ac.uk/]] 167 +|DPUK|Dementia & Aging|Imaging, genetics, lifestyle factors|[[DPUK>>url:https://www.dementiasplatform.uk/]] 168 +|PRION Registry|Prion Diseases|Clinical and genetic data|[[PRION Registry>>url:https://www.prionalliance.org/]] 169 +|DECIPHER|Rare Genetic Disorders|Genomic variants|DECIPHER 188 188 189 - Forfurther developments,contributeothe**[[NeurodiagnosesGitHubRepository>>url:https://github.com/neurodiagnoses]]**.171 +If you know a relevant dataset, submit a proposal in [[GitHub Issues>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]]. 190 190 191 - **Collaboration & Partnerships**173 +---- 192 192 193 - Neurodiagnosesactivelyseekspartnershipswith data providers to:175 +== **Collaboration & Partnerships** == 194 194 195 -* Enable API-based data integration for real-time processing. 177 +=== **Where to Insert This** === 178 + 179 +* GitHub: [[docs/collaboration.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/collaboration.md]] 180 +* EBRAINS Wiki: Collabs/neurodiagnoses/Collaborations 181 + 182 +=== **Partnering with Data Providers** === 183 + 184 +Beyond using existing datasets, Neurodiagnoses seeks partnerships with data repositories to: 185 + 186 +* Enable direct API-based data integration for real-time processing. 196 196 * Co-develop harmonized AI-ready datasets with standardized annotations. 197 197 * Secure funding opportunities through joint grant applications. 198 198 199 -**Interested in Partnering?** 190 +=== **Interested in Partnering?** === 200 200 201 201 If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 202 202 203 -* *Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]194 +* Contact: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 204 204 205 - **Final Notes**196 +---- 206 206 207 - NeurodiagnosesAIis committed to advancing the integration of artificialintelligence in neurodiagnostic processes. By continuously expanding our data ecosystem and incorporating standardized biomarker classifications through theNeuromarker ontology, weaim to enhance cross-diseaseAI training and improve diagnostic accuracy across neurodegenerative disorders.198 +== **Final Notes** == 208 208 209 - Weencourage researchersand institutionsto contributenewdatasetsand methodologies tofurtherenrichthiscollaborativeplatform. Yourparticipation isvitalindrivinginnovationand fostering a deeperunderstandingof complex neurological conditions.200 +Neurodiagnoses continuously expands its data ecosystem to support AI-driven clinical decision-making. Researchers and institutions are encouraged to contribute new datasets and methodologies. 210 210 211 - **For additional technical documentationand collaboration opportunities:**202 +For additional technical documentation: 212 212 213 -* **GitHub Repository:** [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]]214 -* **EBRAINS Collaboration Page:** [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]]204 +* [[GitHub Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]] 205 +* [[EBRAINS Collaboration Page>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]] 215 215 216 -If you enc ounteranyissuesduring data integrationor have suggestions for improvement,pleaseopen a GitHub Issueor consultEBRAINS NeurodiagnosesForum.Together,wecanadvancethefieldof neurodiagnosticsand contribute to better patient outcomes.207 +If you experience issues integrating data, open a [[GitHub Issue>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]] or consult the EBRAINS Neurodiagnoses Forum.
- workflow neurodiagnoses.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.manuelmenendez - Size
-
... ... @@ -1,1 +1,0 @@ 1 -157.5 KB - Content