Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 28.1
edited by manuelmenendez
on 2025/03/14 08:31
on 2025/03/14 08:31
Change comment:
There is no comment for this version
To version 2.1
edited by manuelmenendez
on 2025/01/27 23:07
on 2025/01/27 23:07
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,216 +98,106 @@ 1 -**Neurodiagnoses AI** is an open-source, AI-driven framework designed to enhance the diagnosis and prognosis of central nervous system (CNS) disorders. It encompasses a broader spectrum of neurological conditions. The system integrates multimodal data sources—including EEG, neuroimaging, biomarkers, and genetics—and employs machine learning models to deliver explainable, real-time diagnostic insights. A key feature of this framework is the incorporation of the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker) **and** Disease Knowledge Transfer (DKT)**, which standardizes disease and biomarker classification across all CNS diseases, facilitating cross-disease AI training. 2 - 3 -**Neuromarker: Generalized Biomarker Ontology** 4 - 5 -Neuromarker extends the Common Alzheimer’s Disease Research Ontology (CADRO) into a comprehensive biomarker categorization framework applicable to all neurodegenerative diseases (NDDs). This ontology enables standardized classification, AI-based feature extraction, and seamless multimodal data integration. 6 - 7 -**Recommended Software** 8 - 9 -There is a suite of software that can help implement the workflow needed in Neurodiagnoses. Find a list of recommendations [[here>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/recommended_software]]. 10 - 11 -**Core Biomarker Categories** 12 - 13 -Within the Neurodiagnoses AI framework, biomarkers are categorized as follows: 14 - 15 -|=**Category**|=**Description** 16 -|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 17 -|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 18 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL, autoantiboides 19 -|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 20 -|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 21 -|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) 22 -|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 23 -|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 24 - 25 -**Integrating External Databases into Neurodiagnoses** 26 - 27 -To enhance diagnostic precision, Neurodiagnoses AI incorporates data from multiple biomedical and neurological research databases. Researchers can integrate external datasets by following these steps: 28 - 29 -1. ((( 30 -**Register for Access** 31 - 32 -* Each external database requires individual registration and access approval. 33 -* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses. 34 -* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data. 35 -))) 36 -1. ((( 37 -**Download & Prepare Data** 38 - 39 -* Download datasets while adhering to database usage policies. 40 -* ((( 41 -Ensure files meet Neurodiagnoses format requirements: 42 - 43 -|=**Data Type**|=**Accepted Formats** 44 -|**Tabular Data**|.csv, .tsv 45 -|**Neuroimaging**|.nii, .dcm 46 -|**Genomic Data**|.fasta, .vcf 47 -|**Clinical Metadata**|.json, .xml 48 -))) 49 -* ((( 50 -**Mandatory Fields for Integration**: 51 - 52 -* Subject ID: Unique patient identifier 53 -* Diagnosis: Standardized disease classification 54 -* Biomarkers: CSF, plasma, or imaging biomarkers 55 -* Genetic Data: Whole-genome or exome sequencing 56 -* Neuroimaging Metadata: MRI/PET acquisition parameters 57 -))) 58 -))) 59 -1. ((( 60 -**Upload Data to Neurodiagnoses** 61 - 62 -* ((( 63 -**Option 1: Upload to EBRAINS Bucket** 64 - 65 -* Location: EBRAINS Neurodiagnoses Bucket 66 -* Ensure correct metadata tagging before submission. 67 -))) 68 -* ((( 69 -**Option 2: Contribute via GitHub Repository** 70 - 71 -* Location: GitHub Data Repository 72 -* Create a new folder under /data/ and include a dataset description. 73 -* For large datasets, contact project administrators before uploading. 74 -))) 75 -))) 76 -1. ((( 77 -**Integrate Data into AI Models** 78 - 79 -* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 80 -* Standardize neuroimaging and biomarker formats using harmonization tools. 81 -* Utilize machine learning models to handle missing data and feature extraction. 82 -* Train AI models with newly integrated patient cohorts. 83 - 84 -**Reference**: See docs/data_processing.md for detailed instructions. 85 -))) 86 - 87 -**AI-Driven Biomarker Categorization** 88 - 89 -Neurodiagnoses employs advanced AI models for biomarker classification: 90 - 91 -|=**Model Type**|=**Application** 92 -|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 93 -|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 94 -|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 95 - 96 -=== **Jupyter Integration with EBRAINS** === 97 - 98 98 === **Overview** === 99 99 100 - NeurodiagnosesOpenSourceleverages**JupyterNotebooksfrom EBRAINS**to facilitateneurodiagnostic research,biomarker analysis, and AI-drivendataprocessing.Thisintegration providesaninteractiveand reproducibleenvironmentfordevelopingmachineearningmodels,analyzingneuroimagingdata,andexploringmultimodalbiomarkers. Jupyterintegration in EBRAINSempowers**Neurodiagnoses OpenSource**to: ✅ **Analyze MRI,EEG, andbiomarkerdata efficiently**.✅ **Trainmachinelearning modelswith high-performancecomputing**.✅ **Ensure transparencywithinteractiveexplainabilitytools**. ✅ **Enable collaborativeneurodiagnosticresearch with reproducible notebooks**.3 +This section describes the step-by-step process used in the **Neurodiagnoses** project to develop a novel diagnostic framework for neurological diseases. The methodology integrates artificial intelligence (AI), biomedical ontologies, and computational neuroscience to create a structured, interpretable, and scalable diagnostic system. 101 101 102 - === **Key Capabilities of Jupyter in Neurodiagnoses** ===5 +---- 103 103 104 -=== =**1.NeuroimagingAnalysis (MRI, fMRI, PET)** ====7 +=== **1. Data Integration** === 105 105 106 -* **Preprocessing Pipelines:** 107 -** Use **Nipype, NiLearn, ANTs, and FreeSurfer** for structural and functional MRI analysis. 108 -** Skull stripping, segmentation, and registration of MRI scans. 109 -** Entropy-based slice selection for training deep learning models. 110 -* **Deep Learning for Neuroimaging:** 111 -** Implement **CNN-based models (ResNet, VGG16, Autoencoders)** for biomarker extraction. 112 -** Feature-based classification of **Alzheimer’s, Parkinson’s, and MCI** from neuroimaging data. 9 +==== **Data Sources** ==== 113 113 114 -==== **2. EEG and MEG Signal Processing** ==== 11 +* **Biomedical Ontologies**: 12 +** Human Phenotype Ontology (HPO) for phenotypic abnormalities. 13 +** Gene Ontology (GO) for molecular and cellular processes. 14 +* **Neuroimaging Datasets**: 15 +** Example: Alzheimer’s Disease Neuroimaging Initiative (ADNI), OpenNeuro. 16 +* **Clinical and Biomarker Data**: 17 +** Anonymized clinical reports, molecular biomarkers, and test results. 115 115 116 -* **Data Preprocessing & Artifact Removal:** 117 -** Use **MNE-Python** for filtering, ICA-based artifact rejection, and time-series normalization. 118 -** Extract frequency and time-domain features from EEG/MEG signals. 119 -* **Feature Engineering & Connectivity Analysis:** 120 -** Functional connectivity analysis using **coherence and phase synchronization metrics**. 121 -** Graph-theory-based EEG biomarkers for neurodegenerative disease classification. 122 -* **Deep Learning for EEG Analysis:** 123 -** Train LSTMs and CNNs for automatic EEG-based classification of MCI and cognitive decline. 19 +==== **Data Preprocessing** ==== 124 124 125 -==== **3. Machine Learning for Biomarker Discovery** ==== 21 +1. **Standardization**: Ensure all data sources are normalized to a common format. 22 +1. **Feature Selection**: Identify relevant features for diagnosis (e.g., biomarkers, imaging scores). 23 +1. **Data Cleaning**: Handle missing values and remove duplicates. 126 126 127 -* **SHAP-based Explainability for Biomarkers:** 128 -** Use **Random Forest + SHAP** to rank the most predictive CSF, blood, and imaging biomarkers. 129 -** Generate SHAP summary plots to interpret the impact of individual biomarkers. 130 -* **Multi-Modal Feature Selection:** 131 -** Implement **Anchor-Graph Feature Selection** to combine MRI, EEG, and CSF data. 132 -** PCA and autoencoders for dimensionality reduction and feature extraction. 133 -* **Automated Risk Prediction Models:** 134 -** Train ensemble models combining **deep learning and classical ML algorithms**. 135 -** Apply **subject-level cross-validation** to prevent data leakage and ensure reproducibility. 25 +---- 136 136 137 -=== =**4.ComputationalSimulations& Virtual Brain Models** ====27 +=== **2. AI-Based Analysis** === 138 138 139 -* **Integration with The Virtual Brain (TVB):** 140 -** Simulate large-scale brain networks based on individual neuroimaging data. 141 -** Model the effect of neurodegenerative progression on brain activity. 142 -* **Cortical and Subcortical Connectivity Analysis:** 143 -** Generate connectivity matrices using diffusion MRI and functional MRI correlations. 144 -** Validate computational simulations with real patient data from EBRAINS datasets. 29 +==== **Model Development** ==== 145 145 146 -==== **5. Interactive Data Visualization & Reporting** ==== 31 +* **Embedding Models**: Use pre-trained models like BioBERT or BioLORD for text data. 32 +* **Classification Models**: 33 +** Algorithms: Random Forest, Support Vector Machines (SVM), or neural networks. 34 +** Purpose: Predict the likelihood of specific neurological conditions based on input data. 147 147 148 -* **Dynamic Plots & Dashboards:** 149 -** Use **Matplotlib, Seaborn, Plotly** for interactive visualizations of biomarkers. 150 -** Implement real-time MRI slice rendering and EEG signal visualization. 151 -* **Automated Report Generation:** 152 -** Generate **Jupyter-based PDF reports** summarizing key findings. 153 -** Export analysis results in JSON, CSV, and interactive web dashboards. 36 +==== **Dimensionality Reduction and Interpretability** ==== 154 154 155 -=== **How to Use Neurodiagnoses with Jupyter in EBRAINS** === 38 +* Leverage DEIBO (Data-driven Embedding Interpretation Based on Ontologies) to connect model dimensions to ontology concepts. 39 +* Evaluate interpretability using metrics like the Area Under the Interpretability Curve (AUIC). 156 156 157 - ==== **1. Access EBRAINS Jupyter Environment** ====41 +---- 158 158 159 -1. Create an **EBRAINS account** at [[EBRAINS.eu>>url:https://ebrains.eu/]]. 160 -1. Navigate to the **Collaboratory** and open the Jupyter Lab interface. 161 -1. Clone the Neurodiagnoses repository: 43 +=== **3. Diagnostic Framework** === 162 162 163 -{{{git clone https://github.com/neurodiagnoses 164 -cd neurodiagnoses 165 -pip install -r requirements.txt 166 -}}} 45 +==== **Axes of Diagnosis** ==== 167 167 168 - ====**2. Run Prebuilt NeurodiagnosesNotebooks**====47 +The framework organizes diagnostic data into three axes: 169 169 170 -1. Open the **notebooks/** directory inside Jupyter. 171 -1. Run any of the available notebooks: 172 -1*. mri_biomarker_analysis.ipynb → Extracts MRI-based biomarkers. 173 -1*. eeg_preprocessing.ipynb → Cleans and processes EEG signals. 174 -1*. shap_biomarker_explainability.ipynb → Visualizes biomarker importance. 175 -1*. disease_risk_prediction.ipynb → Runs ML models for disease classification. 49 +1. **Etiology**: Genetic and environmental risk factors. 50 +1. **Molecular Markers**: Biomarkers such as amyloid-beta, tau, and alpha-synuclein. 51 +1. **Neuroanatomical Correlations**: Results from neuroimaging (e.g., MRI, PET). 176 176 177 -==== ** 3. Train CustomAI ModelsonEBRAINSHPC Resources** ====53 +==== **Recommendation System** ==== 178 178 179 -* Use EBRAINS **GPU and HPC clusters** for deep learning training: 55 +* Suggests additional tests or biomarkers if gaps are detected in the data. 56 +* Prioritizes tests based on clinical impact and cost-effectiveness. 180 180 181 -{{{from neurodiagnoses.models import train_cnn_model 182 -train_cnn_model(data_path='data/mri/', model_type='ResNet50') 183 -}}} 184 -* Save trained models for deployment: 58 +---- 185 185 186 -{{{model.save('models/neurodiagnoses_cnn.h5') 187 -}}} 60 +=== **4. Computational Workflow** === 188 188 189 -For further developments, contribute to the **[[Neurodiagnoses GitHub Repository>>url:https://github.com/neurodiagnoses]]**. 62 +1. **Data Loading**: Import data from storage (Drive or Bucket). 63 +1. **Feature Engineering**: Generate derived features from the raw data. 64 +1. **Model Training**: 65 +1*. Split data into training, validation, and test sets. 66 +1*. Train models with cross-validation to ensure robustness. 67 +1. **Evaluation**: 68 +1*. Metrics: Accuracy, F1-Score, AUIC for interpretability. 69 +1*. Compare against baseline models and domain benchmarks. 190 190 191 - **Collaboration & Partnerships**71 +---- 192 192 193 - Neurodiagnosesactivelyseeks partnerships withdata providers to:73 +=== **5. Validation** === 194 194 195 -* Enable API-based data integration for real-time processing. 196 -* Co-develop harmonized AI-ready datasets with standardized annotations. 197 -* Secure funding opportunities through joint grant applications. 75 +==== **Internal Validation** ==== 198 198 199 -**Interested in Partnering?** 77 +* Test the system using simulated datasets and known clinical cases. 78 +* Fine-tune models based on validation results. 200 200 201 - Ifyou representa research consortium or databaseprovider, reach out to exploredata-sharingagreements.80 +==== **External Validation** ==== 202 202 203 -**Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 82 +* Collaborate with research institutions and hospitals to test the system in real-world settings. 83 +* Use anonymized patient data to ensure privacy compliance. 204 204 205 - **Final Notes**85 +---- 206 206 207 - NeurodiagnosesAIis committed to advancing the integration of artificialintelligence in neurodiagnostic processes. By continuously expanding our data ecosystem and incorporating standardizedbiomarker classifications through theNeuromarker ontology, we aimtoenhance cross-disease AItrainingand improve diagnostic accuracy across neurodegenerative disorders.87 +=== **6. Collaborative Development** === 208 208 209 - Weencourageresearchersandinstitutionsto contributenew datasetsand methodologiesto furtherenrichthis collaborative platform. Your participationisvital inrivinginnovation andfostering a deeperunderstandingof complexneurologicalconditions.89 +The project is open to contributions from researchers, clinicians, and developers. Key tools include: 210 210 211 -**For additional technical documentation and collaboration opportunities:** 91 +* **Jupyter Notebooks**: For data analysis and pipeline development. 92 +* **Wiki Pages**: For documenting methods and results. 93 +* **Drive and Bucket**: For sharing code, data, and outputs. 212 212 213 -* **GitHub Repository:** [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]] 214 -* **EBRAINS Collaboration Page:** [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]] 95 +---- 215 215 216 -If you encounter any issues during data integration or have suggestions for improvement, please open a GitHub Issue or consult the EBRAINS Neurodiagnoses Forum. Together, we can advance the field of neurodiagnostics and contribute to better patient outcomes. 97 +=== **7. Tools and Technologies** === 98 + 99 +* **Programming Languages**: Python for AI and data processing. 100 +* **Frameworks**: 101 +** TensorFlow and PyTorch for machine learning. 102 +** Flask or FastAPI for backend services. 103 +* **Visualization**: Plotly and Matplotlib for interactive and static visualizations. 104 +* **EBRAINS Services**: 105 +** Collaboratory Lab for running Notebooks. 106 +** Buckets for storing large datasets.
- workflow neurodiagnoses.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.manuelmenendez - Size
-
... ... @@ -1,1 +1,0 @@ 1 -157.5 KB - Content