Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 28.1
edited by manuelmenendez
on 2025/03/14 08:31
on 2025/03/14 08:31
Change comment:
There is no comment for this version
To version 20.1
edited by manuelmenendez
on 2025/02/14 14:47
on 2025/02/14 14:47
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,21 +1,25 @@ 1 - **NeurodiagnosesAI**isan open-source, AI-driven framework designedto enhancethediagnosis and prognosis of central nervous system (CNS)disorders.Itencompasses a broader spectrumof neurological conditions. The systemintegratesmultimodal data sources—including EEG, neuroimaging,biomarkers,and genetics—and employs machinelearning models to deliver explainable, real-time diagnostic insights.Akey feature of this frameworkstheincorporationofthe **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)and** DiseaseKnowledge Transfer(DKT)**, which standardizes disease andbiomarker classification across allCNSdiseases, facilitatingcross-diseaseAI training.1 +Here is the updated **Methodology** section for the EBRAINS Wiki, incorporating the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)** for **biomarker classification across all neurodegenerative diseases**. 2 2 3 - **Neuromarker: Generalized Biomarker Ontology**3 +---- 4 4 5 -Neuro marker extends the Common Alzheimer’sDiseaseResearch Ontology (CADRO)into a comprehensive biomarker categorizationframeworkapplicableto all neurodegenerative diseases (NDDs). This ontology enablesstandardizedclassification,AI-based featureextraction, andseamlessmultimodal data integration.5 +== **Neurodiagnoses AI: Multimodal AI for Neurodiagnostic Predictions** == 6 6 7 -** Recommended Software**7 +=== **Project Overview** === 8 8 9 - Thereisasuite ofsoftware thatcan helpimplement theworkflowneededinNeurodiagnoses.Find a list ofrecommendations[[here>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/recommended_software]].9 +Neurodiagnoses AI implements **AI-driven diagnostic and prognostic models** for central nervous system (CNS) disorders, expanding the **Florey Dementia Index (FDI) methodology** to a broader set of neurological conditions. The approach integrates **multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics) and employs machine learning models to provide **explainable, real-time diagnostic insights**. This framework now incorporates **Neuromarker**, a **generalized biomarker ontology** that categorizes biomarkers across neurodegenerative diseases, enabling **standardized, cross-disease AI training**. 10 10 11 -** Core BiomarkerCategories**11 +== **Neuromarker: Generalized Biomarker Ontology** == 12 12 13 - Within theNeurodiagnoses AIframework,biomarkersare categorized as follows:13 +Neuromarker extends the **Common Alzheimer’s Disease Research Ontology (CADRO)** into a **cross-disease biomarker categorization framework** applicable to all neurodegenerative diseases (NDDs). It allows for **standardized classification, AI-based feature extraction, and multimodal integration**. 14 14 15 +=== **Core Biomarker Categories** === 16 + 17 +The following ontology is used within **Neurodiagnoses AI** for biomarker categorization: 18 + 15 15 |=**Category**|=**Description** 16 16 |**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic) 17 17 |**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein) 18 -|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL , autoantiboides22 +|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL 19 19 |**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers 20 20 |**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers 21 21 |**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS) ... ... @@ -22,195 +22,121 @@ 22 22 |**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores 23 23 |**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities 24 24 25 - **Integrating External Databases into Neurodiagnoses**29 +---- 26 26 27 - Toenhance diagnosticprecision,NeurodiagnosesAI incorporates data from multiple biomedical and neurologicalresearch databases.Researchers canintegrateexternal datasets by followingtheseteps:31 +== **How to Use External Databases in Neurodiagnoses** == 28 28 29 -1. ((( 30 -**Register for Access** 33 +To enhance diagnostic accuracy, Neurodiagnoses AI integrates data from **multiple biomedical and neurological research databases**. Researchers can follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework. 31 31 32 -* Each external database requires individual registration and access approval. 33 -* Ensure compliance with ethical approvals and data usage agreements before integrating datasets into Neurodiagnoses. 34 -* Some repositories may require a Data Usage Agreement (DUA) for sensitive medical data. 35 -))) 36 -1. ((( 37 -**Download & Prepare Data** 35 +=== **Potential Data Sources** === 38 38 39 -* Download datasets while adhering to database usage policies. 40 -* ((( 41 -Ensure files meet Neurodiagnoses format requirements: 37 +Neurodiagnoses maintains an **updated list** of biomedical datasets relevant to neurodegenerative diseases: 42 42 43 -|=**Data Type**|=**Accepted Formats** 44 -|**Tabular Data**|.csv, .tsv 45 -|**Neuroimaging**|.nii, .dcm 46 -|**Genomic Data**|.fasta, .vcf 47 -|**Clinical Metadata**|.json, .xml 48 -))) 49 -* ((( 50 -**Mandatory Fields for Integration**: 39 +* **ADNI**: Alzheimer's Disease Imaging & Biomarkers → [[ADNI>>url:https://adni.loni.usc.edu/]] 40 +* **PPMI**: Parkinson’s Disease Imaging & Biospecimens → [[PPMI>>url:https://www.ppmi-info.org/]] 41 +* **GP2**: Whole-Genome Sequencing for PD → [[GP2>>url:https://gp2.org/]] 42 +* **Enroll-HD**: Huntington’s Disease Clinical & Genetic Data → [[Enroll-HD>>url:https://www.enroll-hd.org/]] 43 +* **GAAIN**: Multi-Source Alzheimer’s Data Aggregation → [[GAAIN>>url:https://gaain.org/]] 44 +* **UK Biobank**: Population-Wide Genetic, Imaging & Health Records → [[UK Biobank>>url:https://www.ukbiobank.ac.uk/]] 45 +* **DPUK**: Dementia & Aging Data → [[DPUK>>url:https://www.dementiasplatform.uk/]] 46 +* **PRION Registry**: Prion Diseases Clinical & Genetic Data → [[PRION Registry>>url:https://prionregistry.org/]] 47 +* **DECIPHER**: Rare Genetic Disorder Genomic Variants → [[DECIPHER>>url:https://decipher.sanger.ac.uk/]] 51 51 52 -* Subject ID: Unique patient identifier 53 -* Diagnosis: Standardized disease classification 54 -* Biomarkers: CSF, plasma, or imaging biomarkers 55 -* Genetic Data: Whole-genome or exome sequencing 56 -* Neuroimaging Metadata: MRI/PET acquisition parameters 57 -))) 58 -))) 59 -1. ((( 60 -**Upload Data to Neurodiagnoses** 49 +---- 61 61 62 -* ((( 63 -**Option 1: Upload to EBRAINS Bucket** 51 +== **1. Register for Access** == 64 64 65 -* Location: EBRAINS Neurodiagnoses Bucket 66 -* Ensure correct metadata tagging before submission. 67 -))) 68 -* ((( 69 -**Option 2: Contribute via GitHub Repository** 53 +* Each external database requires **individual registration and access approval**. 54 +* Ensure compliance with **ethical approvals and data usage agreements** before integrating datasets into Neurodiagnoses. 55 +* Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data. 70 70 71 -* Location: GitHub Data Repository 72 -* Create a new folder under /data/ and include a dataset description. 73 -* For large datasets, contact project administrators before uploading. 74 -))) 75 -))) 76 -1. ((( 77 -**Integrate Data into AI Models** 57 +---- 78 78 79 -* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 80 -* Standardize neuroimaging and biomarker formats using harmonization tools. 81 -* Utilize machine learning models to handle missing data and feature extraction. 82 -* Train AI models with newly integrated patient cohorts. 59 +== **2. Download & Prepare Data** == 83 83 84 -* *Reference**:See docs/data_processing.mdfordetailedinstructions.85 - )))61 +* Download datasets while adhering to **database usage policies**. 62 +* Ensure files meet **Neurodiagnoses format requirements**: 86 86 87 -**AI-Driven Biomarker Categorization** 64 +|=**Data Type**|=**Accepted Formats** 65 +|**Tabular Data**|.csv, .tsv 66 +|**Neuroimaging**|.nii, .dcm 67 +|**Genomic Data**|.fasta, .vcf 68 +|**Clinical Metadata**|.json, .xml 88 88 89 -Neurodiagnoses employs advanced AI models for biomarker classification: 70 +* **Mandatory Fields for Integration**: 71 +** **Subject ID**: Unique patient identifier 72 +** **Diagnosis**: Standardized disease classification 73 +** **Biomarkers**: CSF, plasma, or imaging biomarkers 74 +** **Genetic Data**: Whole-genome or exome sequencing 75 +** **Neuroimaging Metadata**: MRI/PET acquisition parameters 90 90 91 -|=**Model Type**|=**Application** 92 -|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 93 -|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 94 -|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 77 +---- 95 95 96 -== =**JupyterIntegrationwith EBRAINS** ===79 +== **3. Upload Data to Neurodiagnoses** == 97 97 98 -=== **O verview** ===81 +=== **Option 1: Upload to EBRAINS Bucket** === 99 99 100 -Neurodiagnoses Open Source leverages **Jupyter Notebooks from EBRAINS** to facilitate neurodiagnostic research, biomarker analysis, and AI-driven data processing. This integration provides an interactive and reproducible environment for developing machine learning models, analyzing neuroimaging data, and exploring multimodal biomarkers. Jupyter integration in EBRAINS empowers **Neurodiagnoses Open Source** to: ✅ **Analyze MRI, EEG, and biomarker data efficiently**. ✅ **Train machine learning models with high-performance computing**. ✅ **Ensure transparency with interactive explainability tools**. ✅ **Enable collaborative neurodiagnostic research with reproducible notebooks**. 83 +* Location: **EBRAINS Neurodiagnoses Bucket** 84 +* Ensure **correct metadata tagging** before submission. 101 101 102 -=== ** Key CapabilitiesofJupyterinNeurodiagnoses** ===86 +=== **Option 2: Contribute via GitHub Repository** === 103 103 104 -==== **1. Neuroimaging Analysis (MRI, fMRI, PET)** ==== 88 +* Location: **GitHub Data Repository** 89 +* Create a **new folder under /data/** and include a **dataset description**. 90 +* **For large datasets**, contact project administrators before uploading. 105 105 106 -* **Preprocessing Pipelines:** 107 -** Use **Nipype, NiLearn, ANTs, and FreeSurfer** for structural and functional MRI analysis. 108 -** Skull stripping, segmentation, and registration of MRI scans. 109 -** Entropy-based slice selection for training deep learning models. 110 -* **Deep Learning for Neuroimaging:** 111 -** Implement **CNN-based models (ResNet, VGG16, Autoencoders)** for biomarker extraction. 112 -** Feature-based classification of **Alzheimer’s, Parkinson’s, and MCI** from neuroimaging data. 92 +---- 113 113 114 -== ==**2.EEGandMEG SignalProcessing** ====94 +== **4. Integrate Data into AI Models** == 115 115 116 -* **Data Preprocessing & Artifact Removal:** 117 -** Use **MNE-Python** for filtering, ICA-based artifact rejection, and time-series normalization. 118 -** Extract frequency and time-domain features from EEG/MEG signals. 119 -* **Feature Engineering & Connectivity Analysis:** 120 -** Functional connectivity analysis using **coherence and phase synchronization metrics**. 121 -** Graph-theory-based EEG biomarkers for neurodegenerative disease classification. 122 -* **Deep Learning for EEG Analysis:** 123 -** Train LSTMs and CNNs for automatic EEG-based classification of MCI and cognitive decline. 96 +* Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**. 97 +* **Standardize neuroimaging and biomarker formats** using harmonization tools. 98 +* Use **machine learning models** to handle **missing data** and **feature extraction**. 99 +* Train AI models with **newly integrated patient cohorts**. 124 124 125 - ====**3. MachineLearning forBiomarkerDiscovery** ====101 +**Reference**: See docs/data_processing.md for detailed instructions. 126 126 127 -* **SHAP-based Explainability for Biomarkers:** 128 -** Use **Random Forest + SHAP** to rank the most predictive CSF, blood, and imaging biomarkers. 129 -** Generate SHAP summary plots to interpret the impact of individual biomarkers. 130 -* **Multi-Modal Feature Selection:** 131 -** Implement **Anchor-Graph Feature Selection** to combine MRI, EEG, and CSF data. 132 -** PCA and autoencoders for dimensionality reduction and feature extraction. 133 -* **Automated Risk Prediction Models:** 134 -** Train ensemble models combining **deep learning and classical ML algorithms**. 135 -** Apply **subject-level cross-validation** to prevent data leakage and ensure reproducibility. 103 +---- 136 136 137 -== ==**4. ComputationalSimulations & Virtual Brain Models** ====105 +== **AI-Driven Biomarker Categorization** == 138 138 139 -* **Integration with The Virtual Brain (TVB):** 140 -** Simulate large-scale brain networks based on individual neuroimaging data. 141 -** Model the effect of neurodegenerative progression on brain activity. 142 -* **Cortical and Subcortical Connectivity Analysis:** 143 -** Generate connectivity matrices using diffusion MRI and functional MRI correlations. 144 -** Validate computational simulations with real patient data from EBRAINS datasets. 107 +Neurodiagnoses employs **AI models** for biomarker classification: 145 145 146 -==== **5. Interactive Data Visualization & Reporting** ==== 109 +|=**Model Type**|=**Application** 110 +|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases 111 +|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers 112 +|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data 147 147 148 -* **Dynamic Plots & Dashboards:** 149 -** Use **Matplotlib, Seaborn, Plotly** for interactive visualizations of biomarkers. 150 -** Implement real-time MRI slice rendering and EEG signal visualization. 151 -* **Automated Report Generation:** 152 -** Generate **Jupyter-based PDF reports** summarizing key findings. 153 -** Export analysis results in JSON, CSV, and interactive web dashboards. 114 +---- 154 154 155 -== =**How toUse NeurodiagnoseswithJupytern EBRAINS** ===116 +== **Collaboration & Partnerships** == 156 156 157 -=== =**1. Access EBRAINS JupyterEnvironment** ====118 +=== **Partnering with Data Providers** === 158 158 159 -1. Create an **EBRAINS account** at [[EBRAINS.eu>>url:https://ebrains.eu/]]. 160 -1. Navigate to the **Collaboratory** and open the Jupyter Lab interface. 161 -1. Clone the Neurodiagnoses repository: 120 +Neurodiagnoses seeks partnerships with data repositories to: 162 162 163 -{{{git clone https://github.com/neurodiagnoses 164 -cd neurodiagnoses 165 -pip install -r requirements.txt 166 -}}} 122 +* Enable **API-based data integration** for real-time processing. 123 +* Co-develop **harmonized AI-ready datasets** with standardized annotations. 124 +* Secure **funding opportunities** through joint grant applications. 167 167 168 -==== **2. Run Prebuilt Neurodiagnoses Notebooks** ==== 169 - 170 -1. Open the **notebooks/** directory inside Jupyter. 171 -1. Run any of the available notebooks: 172 -1*. mri_biomarker_analysis.ipynb → Extracts MRI-based biomarkers. 173 -1*. eeg_preprocessing.ipynb → Cleans and processes EEG signals. 174 -1*. shap_biomarker_explainability.ipynb → Visualizes biomarker importance. 175 -1*. disease_risk_prediction.ipynb → Runs ML models for disease classification. 176 - 177 -==== **3. Train Custom AI Models on EBRAINS HPC Resources** ==== 178 - 179 -* Use EBRAINS **GPU and HPC clusters** for deep learning training: 180 - 181 -{{{from neurodiagnoses.models import train_cnn_model 182 -train_cnn_model(data_path='data/mri/', model_type='ResNet50') 183 -}}} 184 -* Save trained models for deployment: 185 - 186 -{{{model.save('models/neurodiagnoses_cnn.h5') 187 -}}} 188 - 189 -For further developments, contribute to the **[[Neurodiagnoses GitHub Repository>>url:https://github.com/neurodiagnoses]]**. 190 - 191 -**Collaboration & Partnerships** 192 - 193 -Neurodiagnoses actively seeks partnerships with data providers to: 194 - 195 -* Enable API-based data integration for real-time processing. 196 -* Co-develop harmonized AI-ready datasets with standardized annotations. 197 -* Secure funding opportunities through joint grant applications. 198 - 199 199 **Interested in Partnering?** 200 200 201 -If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 128 +* If you represent a **research consortium or database provider**, reach out to explore **data-sharing agreements**. 129 +* **Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 202 202 203 - **Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]131 +---- 204 204 205 -**Final Notes** 133 +== **Final Notes** == 206 206 207 -Neurodiagnoses AI iscommitted to advancingtheintegration of artificial intelligence in neurodiagnostic processes. By continuously expandingourdata ecosystemand incorporatingstandardizedbiomarkerclassificationsthrough the Neuromarker ontology,weaim toenhancecross-disease AItrainingand improvediagnosticaccuracyacrossneurodegenerative disorders.135 +Neurodiagnoses continuously expands its **data ecosystem** to support **AI-driven clinical decision-making**. Researchers and institutions are encouraged to **contribute new datasets and methodologies**. 208 208 209 - We encourageresearchers andnstitutions to contribute new datasets and methodologiesto further enrichthiscollaborative platform.Your participation is vital indriving innovation and fostering a deeper understanding ofcomplexneurological conditions.137 +**For additional technical documentation**: 210 210 211 -**For additional technical documentation and collaboration opportunities:** 139 +* **GitHub Repository**: [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]] 140 +* **EBRAINS Collaboration Page**: [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]] 212 212 213 -* **GitHub Repository:** [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]] 214 -* **EBRAINS Collaboration Page:** [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]] 142 +**If you experience issues integrating data**, open a **GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**. 215 215 216 -If you encounter any issues during data integration or have suggestions for improvement, please open a GitHub Issue or consult the EBRAINS Neurodiagnoses Forum. Together, we can advance the field of neurodiagnostics and contribute to better patient outcomes. 144 +---- 145 + 146 +This **updated methodology** now incorporates [[https:~~/~~/github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/biomarker_ontology>>https://Neuromarker]] for standardized biomarker classification, enabling **cross-disease AI training** across neurodegenerative disorders.
- workflow neurodiagnoses.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.manuelmenendez - Size
-
... ... @@ -1,1 +1,0 @@ 1 -157.5 KB - Content