Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 3.1
edited by manuelmenendez
on 2025/01/27 23:28
on 2025/01/27 23:28
Change comment:
There is no comment for this version
To version 17.1
edited by manuelmenendez
on 2025/02/09 13:01
on 2025/02/09 13:01
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,106 +1,154 @@ 1 -== =**Overview** ===1 +== **Overview** == 2 2 3 - This section describes the step-by-step process used in the **Neurodiagnoses**project todevelop a novel diagnostic framework forneurologicaldiseases.The methodologyintegrates artificial intelligence(AI), biomedicalontologies,and computationalneurosciencetocreatea structured,interpretable, andscalablediagnosticsystem.3 +Neurodiagnoses develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility.** 4 4 5 +This methodology integrates **multi-modal data**, including: 6 +**Genetic data** (whole-genome sequencing, polygenic risk scores). 7 +**Neuroimaging** (MRI, PET, EEG, MEG). 8 +**Neurophysiological data** (EEG-based biomarkers, sleep actigraphy). 9 +**CSF & Blood Biomarkers** (Amyloid-beta, Tau, Neurofilament Light). 10 + 11 +By applying **machine learning models**, Neurodiagnoses generates **structured, explainable diagnostic outputs** to assist **clinical decision-making** and **biomarker-driven patient stratification.** 12 + 5 5 ---- 6 6 7 -== =**1.Data Integration** ===15 +== **Data Integration & External Databases** == 8 8 9 -=== =**DataSources** ====17 +=== **How to Use External Databases in Neurodiagnoses** === 10 10 11 -* **Biomedical Ontologies**: 12 -** Human Phenotype Ontology (HPO) for phenotypic abnormalities. 13 -** Gene Ontology (GO) for molecular and cellular processes. 14 -* **Neuroimaging Datasets**: 15 -** Example: Alzheimer’s Disease Neuroimaging Initiative (ADNI), OpenNeuro. 16 -* **Clinical and Biomarker Data**: 17 -** Anonymized clinical reports, molecular biomarkers, and test results. 19 +Neurodiagnoses integrates data from multiple **biomedical and neurological research databases**. Researchers can follow these steps to **access, prepare, and integrate** data into the Neurodiagnoses framework. 18 18 19 -==== **Data Preprocessing** ==== 21 +**Potential Data Sources** 22 +**Reference:** [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 20 20 21 -1. **Standardization**: Ensure all data sources are normalized to a common format. 22 -1. **Feature Selection**: Identify relevant features for diagnosis (e.g., biomarkers, imaging scores). 23 -1. **Data Cleaning**: Handle missing values and remove duplicates. 24 +=== **Register for Access** === 24 24 25 ----- 26 +Each **external database** requires **individual registration** and approval. 27 +✔️ Follow the official **data access guidelines** of each provider. 28 +✔️ Ensure compliance with **ethical approvals** and **data-sharing agreements (DUAs).** 26 26 27 -=== ** 2.AI-BasedAnalysis** ===30 +=== **Download & Prepare Data** === 28 28 29 - ====**ModelDevelopment**====32 +Once access is granted, download datasets **following compliance guidelines** and **format requirements** for integration. 30 30 31 -* **Embedding Models**: Use pre-trained models like BioBERT or BioLORD for text data. 32 -* **Classification Models**: 33 -** Algorithms: Random Forest, Support Vector Machines (SVM), or neural networks. 34 -** Purpose: Predict the likelihood of specific neurological conditions based on input data. 34 +**Supported File Formats** 35 35 36 -==== **Dimensionality Reduction and Interpretability** ==== 36 +* **Tabular Data**: .csv, .tsv 37 +* **Neuroimaging Data**: .nii, .dcm 38 +* **Genomic Data**: .fasta, .vcf 39 +* **Clinical Metadata**: .json, .xml 37 37 38 -* Leverage [[DEIBO>>https://drive.ebrains.eu/f/8d7157708cde4b258db0/]] (Data-driven Embedding Interpretation Based on Ontologies) to connect model dimensions to ontology concepts. 39 -* Evaluate interpretability using metrics like the Area Under the Interpretability Curve (AUIC). 41 +**Mandatory Fields for Integration** 40 40 43 +|=**Field Name**|=**Description** 44 +|**Subject ID**|Unique patient identifier 45 +|**Diagnosis**|Standardized disease classification 46 +|**Biomarkers**|CSF, plasma, or imaging biomarkers 47 +|**Genetic Data**|Whole-genome or exome sequencing 48 +|**Neuroimaging Metadata**|MRI/PET acquisition parameters 49 + 50 +=== **Upload Data to Neurodiagnoses** === 51 + 52 +**Option 1:** Upload to **EBRAINS Bucket** → [[Neurodiagnoses Data Storage>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]] 53 +**Option 2:** Contribute via **GitHub Repository** → [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]] 54 + 55 +**For large datasets, please contact project administrators before uploading.** 56 + 57 +=== **Integrate Data into AI Models** === 58 + 59 +Use **Jupyter Notebooks** on EBRAINS for **data preprocessing.** 60 +Standardize data using **harmonization tools.** 61 +Train AI models with **newly integrated datasets.** 62 + 63 +**Reference:** [[Data Processing Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]] 64 + 41 41 ---- 42 42 43 -== =**3.DiagnosticFramework** ===67 +== **AI-Powered Annotation & Machine Learning Models** == 44 44 45 - ====**Axes ofDiagnosis**====69 +Neurodiagnoses applies **advanced machine learning models** to classify CNS diseases, extract features from **biomarkers and neuroimaging**, and provide **AI-powered annotation.** 46 46 47 - Theframeworkorganizesdiagnostic data into three axes:71 +=== **AI Model Categories** === 48 48 49 -1. **Etiology**: Genetic and environmental risk factors. 50 -1. **Molecular Markers**: Biomarkers such as amyloid-beta, tau, and alpha-synuclein. 51 -1. **Neuroanatomical Correlations**: Results from neuroimaging (e.g., MRI, PET). 73 +|=**Model Type**|=**Function**|=**Example Algorithms** 74 +|**Probabilistic Diagnosis**|Assigns probability scores to multiple CNS disorders.|Random Forest, XGBoost, Bayesian Networks 75 +|**Tridimensional Diagnosis**|Classifies disorders based on Etiology, Biomarkers, and Neuroanatomical Correlations.|CNNs, Transformers, Autoencoders 76 +|**Biomarker Prediction**|Predicts missing biomarker values using regression.|KNN Imputation, Bayesian Estimation 77 +|**Neuroimaging Feature Extraction**|Extracts patterns from MRI, PET, EEG.|CNNs, Graph Neural Networks 78 +|**Clinical Decision Support**|Generates AI-driven diagnostic reports.|SHAP Explainability Tools 52 52 53 - ====**RecommendationSystem** ====80 +**Reference:** [[AI Model Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/models.md]] 54 54 55 -* Suggests additional tests or biomarkers if gaps are detected in the data. 56 -* Prioritizes tests based on clinical impact and cost-effectiveness. 82 +---- 57 57 84 +== **Clinical Decision Support & Tridimensional Diagnostic Framework** == 85 + 86 +Neurodiagnoses generates **structured AI reports** for clinicians, combining: 87 + 88 +**Probabilistic Diagnosis:** AI-generated ranking of potential diagnoses. 89 +**Tridimensional Classification:** Standardized diagnostic reports based on: 90 + 91 +1. **Axis 1:** **Etiology** → Genetic, Autoimmune, Prion, Toxic, Vascular. 92 +1. **Axis 2:** **Molecular Markers** → CSF, Neuroinflammation, EEG biomarkers. 93 +1. **Axis 3:** **Neuroanatomoclinical Correlations** → MRI atrophy, PET. 94 + 95 +**Reference:** [[Tridimensional Classification Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/classification.md]] 96 + 58 58 ---- 59 59 60 -== =**4.ComputationalWorkflow** ===99 +== **Data Security, Compliance & Federated Learning** == 61 61 62 -1. **Data Loading**: Import data from storage (Drive or Bucket). 63 -1. **Feature Engineering**: Generate derived features from the raw data. 64 -1. **Model Training**: 65 -1*. Split data into training, validation, and test sets. 66 -1*. Train models with cross-validation to ensure robustness. 67 -1. **Evaluation**: 68 -1*. Metrics: Accuracy, F1-Score, AUIC for interpretability. 69 -1*. Compare against baseline models and domain benchmarks. 101 +✔ **Privacy-Preserving AI**: Implements **Federated Learning**, ensuring that patient data **never leaves** local institutions. 102 +✔ **Secure Data Access**: Data remains **stored in EBRAINS MIP servers** using **differential privacy techniques.** 103 +✔ **Ethical & GDPR Compliance**: Data-sharing agreements **must be signed** before use. 70 70 105 +**Reference:** [[Data Protection & Federated Learning>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/security.md]] 106 + 71 71 ---- 72 72 73 -== =**5. Validation** ===109 +== **Data Processing & Integration with Clinica.Run** == 74 74 75 - ====**InternalValidation**====111 +Neurodiagnoses now supports **Clinica.Run**, an **open-source neuroimaging platform** for **multimodal data processing.** 76 76 77 -* Test the system using simulated datasets and known clinical cases. 78 -* Fine-tune models based on validation results. 113 +=== **How It Works** === 79 79 80 -==== **External Validation** ==== 115 +✔ **Neuroimaging Preprocessing**: MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines.** 116 +✔ **Automated Biomarker Extraction**: Extracts volumetric, metabolic, and functional biomarkers. 117 +✔ **Data Security & Compliance**: Clinica.Run is **GDPR & HIPAA-compliant.** 81 81 82 -* Collaborate with research institutions and hospitals to test the system in real-world settings. 83 -* Use anonymized patient data to ensure privacy compliance. 119 +=== **Implementation Steps** === 84 84 121 +1. Install **Clinica.Run** dependencies. 122 +1. Configure **Clinica.Run pipeline** in clinica_run_config.json. 123 +1. Run **biomarker extraction pipelines** for AI-based diagnostics. 124 + 125 +**Reference:** [[Clinica.Run Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/clinica_run.md]] 126 + 85 85 ---- 86 86 87 -== =**6.Collaborative Development** ===129 +== **Collaborative Development & Research** == 88 88 89 - Theproject isopentocontributionsfrom researchers, clinicians,anddevelopers.Keytoolsinclude:131 +**We Use GitHub to Develop AI Models & Store Research Data** 90 90 91 -* ** JupyterNotebooks**:Fordataanalysis andpipeline development.92 -* ** WikiPages**:Fordocumentingmethodsndresults.93 -* ** Drive and Bucket**:Forsharing code,data, andoutputs.133 +* **GitHub Repository:** AI model training scripts. 134 +* **GitHub Issues:** Tracks ongoing research questions. 135 +* **GitHub Wiki:** Project documentation & user guides. 94 94 137 +**We Use EBRAINS for Data & Collaboration** 138 + 139 +* **EBRAINS Buckets:** Large-scale neuroimaging and biomarker storage. 140 +* **EBRAINS Jupyter Notebooks:** Cloud-based AI model execution. 141 +* **EBRAINS Wiki:** Research documentation and updates. 142 + 143 +**Join the Project Forum:** [[GitHub Discussions>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]] 144 + 95 95 ---- 96 96 97 - ===**7. ToolsandTechnologies**===147 +**For Additional Documentation:** 98 98 99 -* **Programming Languages**: Python for AI and data processing. 100 -* **Frameworks**: 101 -** TensorFlow and PyTorch for machine learning. 102 -** Flask or FastAPI for backend services. 103 -* **Visualization**: Plotly and Matplotlib for interactive and static visualizations. 104 -* **EBRAINS Services**: 105 -** Collaboratory Lab for running Notebooks. 106 -** Buckets for storing large datasets. 149 +* **GitHub Repository:** [[Neurodiagnoses AI Models>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]] 150 +* **EBRAINS Wiki:** [[Neurodiagnoses Research Collaboration>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]] 151 + 152 +---- 153 + 154 +**Neurodiagnoses is Open for Contributions – Join Us Today!**