Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 4.1
edited by manuelmenendez
on 2025/01/27 23:46
Change comment: There is no comment for this version
To version 17.1
edited by manuelmenendez
on 2025/02/09 13:01
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,107 +1,154 @@
1 -=== **Overview** ===
1 +== **Overview** ==
2 2  
3 -This section describes the step-by-step process used in the **Neurodiagnoses** project to develop a novel diagnostic framework for neurological diseases. The methodology integrates artificial intelligence (AI), biomedical ontologies, and computational neuroscience to create a structured, interpretable, and scalable diagnostic system.
3 +Neurodiagnoses develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility.**
4 4  
5 +This methodology integrates **multi-modal data**, including:
6 +**Genetic data** (whole-genome sequencing, polygenic risk scores).
7 +**Neuroimaging** (MRI, PET, EEG, MEG).
8 +**Neurophysiological data** (EEG-based biomarkers, sleep actigraphy).
9 +**CSF & Blood Biomarkers** (Amyloid-beta, Tau, Neurofilament Light).
10 +
11 +By applying **machine learning models**, Neurodiagnoses generates **structured, explainable diagnostic outputs** to assist **clinical decision-making** and **biomarker-driven patient stratification.**
12 +
5 5  ----
6 6  
7 -=== **1. Data Integration** ===
15 +== **Data Integration & External Databases** ==
8 8  
9 -==== **Data Sources** ====
17 +=== **How to Use External Databases in Neurodiagnoses** ===
10 10  
11 -* **Biomedical Ontologies**:
12 -** Human Phenotype Ontology (HPO) for phenotypic abnormalities.
13 -** Gene Ontology (GO) for molecular and cellular processes.
14 -* **Neuroimaging Datasets**:
15 -** Example: Alzheimer’s Disease Neuroimaging Initiative (ADNI), OpenNeuro.
16 -* **Clinical and Biomarker Data**:
17 -** Anonymized clinical reports, molecular biomarkers, and test results.
19 +Neurodiagnoses integrates data from multiple **biomedical and neurological research databases**. Researchers can follow these steps to **access, prepare, and integrate** data into the Neurodiagnoses framework.
18 18  
19 -==== **Data Preprocessing** ====
21 +**Potential Data Sources**
22 +**Reference:** [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]]
20 20  
21 -1. **Standardization**: Ensure all data sources are normalized to a common format.
22 -1. **Feature Selection**: Identify relevant features for diagnosis (e.g., biomarkers, imaging scores).
23 -1. **Data Cleaning**: Handle missing values and remove duplicates.
24 +=== **Register for Access** ===
24 24  
25 -----
26 +Each **external database** requires **individual registration** and approval.
27 +✔️ Follow the official **data access guidelines** of each provider.
28 +✔️ Ensure compliance with **ethical approvals** and **data-sharing agreements (DUAs).**
26 26  
27 -=== **2. AI-Based Analysis** ===
30 +=== **Download & Prepare Data** ===
28 28  
29 -==== **Model Development** ====
32 +Once access is granted, download datasets **following compliance guidelines** and **format requirements** for integration.
30 30  
31 -* **Embedding Models**: Use pre-trained models like BioBERT or BioLORD for text data.
32 -* **Classification Models**:
33 -** Algorithms: Random Forest, Support Vector Machines (SVM), or neural networks.
34 -** Purpose: Predict the likelihood of specific neurological conditions based on input data.
34 +**Supported File Formats**
35 35  
36 -==== **Dimensionality Reduction and Interpretability** ====
36 +* **Tabular Data**: .csv, .tsv
37 +* **Neuroimaging Data**: .nii, .dcm
38 +* **Genomic Data**: .fasta, .vcf
39 +* **Clinical Metadata**: .json, .xml
37 37  
38 -* Leverage [[DEIBO>>https://drive.ebrains.eu/f/8d7157708cde4b258db0/]] (Data-driven Embedding Interpretation Based on Ontologies) to connect model dimensions to ontology concepts.
39 -* Evaluate interpretability using metrics like the Area Under the Interpretability Curve (AUIC).
41 +**Mandatory Fields for Integration**
40 40  
43 +|=**Field Name**|=**Description**
44 +|**Subject ID**|Unique patient identifier
45 +|**Diagnosis**|Standardized disease classification
46 +|**Biomarkers**|CSF, plasma, or imaging biomarkers
47 +|**Genetic Data**|Whole-genome or exome sequencing
48 +|**Neuroimaging Metadata**|MRI/PET acquisition parameters
49 +
50 +=== **Upload Data to Neurodiagnoses** ===
51 +
52 +**Option 1:** Upload to **EBRAINS Bucket** → [[Neurodiagnoses Data Storage>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]]
53 +**Option 2:** Contribute via **GitHub Repository** → [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]]
54 +
55 +**For large datasets, please contact project administrators before uploading.**
56 +
57 +=== **Integrate Data into AI Models** ===
58 +
59 +Use **Jupyter Notebooks** on EBRAINS for **data preprocessing.**
60 +Standardize data using **harmonization tools.**
61 +Train AI models with **newly integrated datasets.**
62 +
63 +**Reference:** [[Data Processing Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]]
64 +
41 41  ----
42 42  
43 -=== **3. Diagnostic Framework** ===
67 +== **AI-Powered Annotation & Machine Learning Models** ==
44 44  
45 -==== **Axes of Diagnosis** ====
69 +Neurodiagnoses applies **advanced machine learning models** to classify CNS diseases, extract features from **biomarkers and neuroimaging**, and provide **AI-powered annotation.**
46 46  
47 -The framework organizes diagnostic data into three axes:
71 +=== **AI Model Categories** ===
48 48  
49 -1. **Etiology**: Genetic and environmental risk factors.
50 -1. **Molecular Markers**: Biomarkers such as amyloid-beta, tau, and alpha-synuclein.
51 -1. **Neuroanatomical Correlations**: Results from neuroimaging (e.g., MRI, PET).
73 +|=**Model Type**|=**Function**|=**Example Algorithms**
74 +|**Probabilistic Diagnosis**|Assigns probability scores to multiple CNS disorders.|Random Forest, XGBoost, Bayesian Networks
75 +|**Tridimensional Diagnosis**|Classifies disorders based on Etiology, Biomarkers, and Neuroanatomical Correlations.|CNNs, Transformers, Autoencoders
76 +|**Biomarker Prediction**|Predicts missing biomarker values using regression.|KNN Imputation, Bayesian Estimation
77 +|**Neuroimaging Feature Extraction**|Extracts patterns from MRI, PET, EEG.|CNNs, Graph Neural Networks
78 +|**Clinical Decision Support**|Generates AI-driven diagnostic reports.|SHAP Explainability Tools
52 52  
53 -==== **Recommendation System** ====
80 +**Reference:** [[AI Model Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/models.md]]
54 54  
55 -* Suggests additional tests or biomarkers if gaps are detected in the data.
56 -* Prioritizes tests based on clinical impact and cost-effectiveness.
82 +----
57 57  
84 +== **Clinical Decision Support & Tridimensional Diagnostic Framework** ==
85 +
86 +Neurodiagnoses generates **structured AI reports** for clinicians, combining:
87 +
88 +**Probabilistic Diagnosis:** AI-generated ranking of potential diagnoses.
89 +**Tridimensional Classification:** Standardized diagnostic reports based on:
90 +
91 +1. **Axis 1:** **Etiology** → Genetic, Autoimmune, Prion, Toxic, Vascular.
92 +1. **Axis 2:** **Molecular Markers** → CSF, Neuroinflammation, EEG biomarkers.
93 +1. **Axis 3:** **Neuroanatomoclinical Correlations** → MRI atrophy, PET.
94 +
95 +**Reference:** [[Tridimensional Classification Guide>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/classification.md]]
96 +
58 58  ----
59 59  
60 -=== **4. Computational Workflow** ===
99 +== **Data Security, Compliance & Federated Learning** ==
61 61  
62 -1. **Data Loading**: Import data from storage (Drive or Bucket).
63 -1. **Feature Engineering**: Generate derived features from the raw data.
64 -1. **Model Training**:
65 -1*. Split data into training, validation, and test sets.
66 -1*. Train models with cross-validation to ensure robustness.
67 -1. **Evaluation**:
68 -1*. Metrics: Accuracy, F1-Score, AUIC for interpretability.
69 -1*. Compare against baseline models and domain benchmarks.
101 +✔ **Privacy-Preserving AI**: Implements **Federated Learning**, ensuring that patient data **never leaves** local institutions.
102 +✔ **Secure Data Access**: Data remains **stored in EBRAINS MIP servers** using **differential privacy techniques.**
103 +✔ **Ethical & GDPR Compliance**: Data-sharing agreements **must be signed** before use.
70 70  
105 +**Reference:** [[Data Protection & Federated Learning>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/security.md]]
106 +
71 71  ----
72 72  
73 -=== **5. Validation** ===
109 +== **Data Processing & Integration with Clinica.Run** ==
74 74  
75 -==== **Internal Validation** ====
111 +Neurodiagnoses now supports **Clinica.Run**, an **open-source neuroimaging platform** for **multimodal data processing.**
76 76  
77 -* Test the system using simulated datasets and known clinical cases.
78 -* Fine-tune models based on validation results.
113 +=== **How It Works** ===
79 79  
80 -==== **External Validation** ====
115 +✔ **Neuroimaging Preprocessing**: MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines.**
116 +✔ **Automated Biomarker Extraction**: Extracts volumetric, metabolic, and functional biomarkers.
117 +✔ **Data Security & Compliance**: Clinica.Run is **GDPR & HIPAA-compliant.**
81 81  
82 -* Collaborate with research institutions and hospitals to test the system in real-world settings.
83 -* Use anonymized patient data to ensure privacy compliance.
119 +=== **Implementation Steps** ===
84 84  
121 +1. Install **Clinica.Run** dependencies.
122 +1. Configure **Clinica.Run pipeline** in clinica_run_config.json.
123 +1. Run **biomarker extraction pipelines** for AI-based diagnostics.
124 +
125 +**Reference:** [[Clinica.Run Documentation>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/clinica_run.md]]
126 +
85 85  ----
86 86  
87 -=== **6. Collaborative Development** ===
129 +== **Collaborative Development & Research** ==
88 88  
89 -The project is open to contributions from researchers, clinicians, and developers. Key tools include:
131 +**We Use GitHub to Develop AI Models & Store Research Data**
90 90  
91 -* **Jupyter Notebooks**: For data analysis and pipeline development.
92 -** Example: [[probabilistic imputation>>https://drive.ebrains.eu/f/4f69ab52f7734ef48217/]]
93 -* **Wiki Pages**: For documenting methods and results.
94 -* **Drive and Bucket**: For sharing code, data, and outputs.
133 +* **GitHub Repository:** AI model training scripts.
134 +* **GitHub Issues:** Tracks ongoing research questions.
135 +* **GitHub Wiki:** Project documentation & user guides.
95 95  
137 +**We Use EBRAINS for Data & Collaboration**
138 +
139 +* **EBRAINS Buckets:** Large-scale neuroimaging and biomarker storage.
140 +* **EBRAINS Jupyter Notebooks:** Cloud-based AI model execution.
141 +* **EBRAINS Wiki:** Research documentation and updates.
142 +
143 +**Join the Project Forum:** [[GitHub Discussions>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]
144 +
96 96  ----
97 97  
98 -=== **7. Tools and Technologies** ===
147 +**For Additional Documentation:**
99 99  
100 -* **Programming Languages**: Python for AI and data processing.
101 -* **Frameworks**:
102 -** TensorFlow and PyTorch for machine learning.
103 -** Flask or FastAPI for backend services.
104 -* **Visualization**: Plotly and Matplotlib for interactive and static visualizations.
105 -* **EBRAINS Services**:
106 -** Collaboratory Lab for running Notebooks.
107 -** Buckets for storing large datasets.
149 +* **GitHub Repository:** [[Neurodiagnoses AI Models>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]]
150 +* **EBRAINS Wiki:** [[Neurodiagnoses Research Collaboration>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]]
151 +
152 +----
153 +
154 +**Neurodiagnoses is Open for Contributions – Join Us Today!**