Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 4.1
edited by manuelmenendez
on 2025/01/27 23:46
Change comment: There is no comment for this version
To version 18.1
edited by manuelmenendez
on 2025/02/13 12:52
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,107 +1,133 @@
1 -=== **Overview** ===
1 +== **Overview** ==
2 2  
3 -This section describes the step-by-step process used in the **Neurodiagnoses** project to develop a novel diagnostic framework for neurological diseases. The methodology integrates artificial intelligence (AI), biomedical ontologies, and computational neuroscience to create a structured, interpretable, and scalable diagnostic system.
3 +Neurodiagnoses develops a tridimensional diagnostic framework for CNS diseases, incorporating AI-powered annotation tools to improve interpretability, standardization, and clinical utility. The methodology integrates multi-modal data, including genetic, neuroimaging, neurophysiological, and biomarker datasets, and applies machine learning models to generate structured, explainable diagnostic outputs.
4 4  
5 5  ----
6 6  
7 -=== **1. Data Integration** ===
7 +== **How to Use External Databases in Neurodiagnoses** ==
8 8  
9 -==== **Data Sources** ====
9 +To enhance the accuracy of our diagnostic models, Neurodiagnoses integrates data from multiple biomedical and neurological research databases. If you are a researcher, follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework.
10 10  
11 -* **Biomedical Ontologies**:
12 -** Human Phenotype Ontology (HPO) for phenotypic abnormalities.
13 -** Gene Ontology (GO) for molecular and cellular processes.
14 -* **Neuroimaging Datasets**:
15 -** Example: Alzheimer’s Disease Neuroimaging Initiative (ADNI), OpenNeuro.
16 -* **Clinical and Biomarker Data**:
17 -** Anonymized clinical reports, molecular biomarkers, and test results.
11 +=== **Potential Data Sources** ===
18 18  
19 -==== **Data Preprocessing** ====
13 +Neurodiagnoses maintains an updated list of potential biomedical databases relevant to neurodegenerative diseases.
20 20  
21 -1. **Standardization**: Ensure all data sources are normalized to a common format.
22 -1. **Feature Selection**: Identify relevant features for diagnosis (e.g., biomarkers, imaging scores).
23 -1. **Data Cleaning**: Handle missing values and remove duplicates.
15 +* Reference: [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]]
24 24  
25 -----
17 +=== **1. Register for Access** ===
26 26  
27 -=== **2. AI-Based Analysis** ===
19 +Each external database requires individual registration and access approval. Follow the official guidelines of each database provider.
28 28  
29 -==== **Model Development** ====
21 +* Ensure that you have completed all ethical approvals and data access agreements before integrating datasets into Neurodiagnoses.
22 +* Some repositories require a Data Usage Agreement (DUA) before downloading sensitive medical data.
30 30  
31 -* **Embedding Models**: Use pre-trained models like BioBERT or BioLORD for text data.
32 -* **Classification Models**:
33 -** Algorithms: Random Forest, Support Vector Machines (SVM), or neural networks.
34 -** Purpose: Predict the likelihood of specific neurological conditions based on input data.
24 +=== **2. Download & Prepare Data** ===
35 35  
36 -==== **Dimensionality Reduction and Interpretability** ====
26 +Once access is granted, download datasets while complying with data usage policies. Ensure that the files meet Neurodiagnoses’ format requirements for smooth integration.
37 37  
38 -* Leverage [[DEIBO>>https://drive.ebrains.eu/f/8d7157708cde4b258db0/]] (Data-driven Embedding Interpretation Based on Ontologies) to connect model dimensions to ontology concepts.
39 -* Evaluate interpretability using metrics like the Area Under the Interpretability Curve (AUIC).
28 +==== **Supported File Formats** ====
40 40  
41 -----
30 +* Tabular Data: .csv, .tsv
31 +* Neuroimaging Data: .nii, .dcm
32 +* Genomic Data: .fasta, .vcf
33 +* Clinical Metadata: .json, .xml
42 42  
43 -=== **3. Diagnostic Framework** ===
35 +==== **Mandatory Fields for Integration** ====
44 44  
45 -==== **Axes of Diagnosis** ====
37 +|=Field Name|=Description
38 +|Subject ID|Unique patient identifier
39 +|Diagnosis|Standardized disease classification
40 +|Biomarkers|CSF, plasma, or imaging biomarkers
41 +|Genetic Data|Whole-genome or exome sequencing
42 +|Neuroimaging Metadata|MRI/PET acquisition parameters
46 46  
47 -The framework organizes diagnostic data into three axes:
44 +=== **3. Upload Data to Neurodiagnoses** ===
48 48  
49 -1. **Etiology**: Genetic and environmental risk factors.
50 -1. **Molecular Markers**: Biomarkers such as amyloid-beta, tau, and alpha-synuclein.
51 -1. **Neuroanatomical Correlations**: Results from neuroimaging (e.g., MRI, PET).
46 +Once preprocessed, data can be uploaded to EBRAINS or GitHub.
52 52  
53 -==== **Recommendation System** ====
48 +* (((
49 +**Option 1: Upload to EBRAINS Bucket**
54 54  
55 -* Suggests additional tests or biomarkers if gaps are detected in the data.
56 -* Prioritizes tests based on clinical impact and cost-effectiveness.
51 +* Location: [[EBRAINS Neurodiagnoses Bucket>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]]
52 +* Ensure correct metadata tagging before submission.
53 +)))
54 +* (((
55 +**Option 2: Contribute via GitHub Repository**
57 57  
58 -----
57 +* Location: [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]]
58 +* Create a new folder under /data/ and include dataset description.
59 +)))
59 59  
60 -=== **4. Computational Workflow** ===
61 +//Note: For large datasets, please contact the project administrators before uploading.//
61 61  
62 -1. **Data Loading**: Import data from storage (Drive or Bucket).
63 -1. **Feature Engineering**: Generate derived features from the raw data.
64 -1. **Model Training**:
65 -1*. Split data into training, validation, and test sets.
66 -1*. Train models with cross-validation to ensure robustness.
67 -1. **Evaluation**:
68 -1*. Metrics: Accuracy, F1-Score, AUIC for interpretability.
69 -1*. Compare against baseline models and domain benchmarks.
63 +=== **4. Integrate Data into AI Models** ===
70 70  
65 +Once uploaded, datasets must be harmonized and formatted before AI model training.
66 +
67 +==== **Steps for Data Integration** ====
68 +
69 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts.
70 +* Standardize neuroimaging and biomarker formats using harmonization tools.
71 +* Use machine learning models to handle missing data and feature extraction.
72 +* Train AI models with newly integrated patient cohorts.
73 +* Reference: [[Detailed instructions can be found in docs/data_processing.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]].
74 +
71 71  ----
72 72  
73 -=== **5. Validation** ===
77 +== **Database Sources Table** ==
74 74  
75 -==== **Internal Validation** ====
79 +=== **Where to Insert This** ===
76 76  
77 -* Test the system using simulated datasets and known clinical cases.
78 -* Fine-tune models based on validation results.
81 +* GitHub: [[docs/data_sources.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_sources.md]]
82 +* EBRAINS Wiki: Collabs/neurodiagnoses/Data Sources
79 79  
80 -==== **External Validation** ====
84 +=== **Key Databases for Neurodiagnoses** ===
81 81  
82 -* Collaborate with research institutions and hospitals to test the system in real-world settings.
83 -* Use anonymized patient data to ensure privacy compliance.
86 +|=Database|=Focus Area|=Data Type|=Access Link
87 +|ADNI|Alzheimer's Disease|MRI, PET, CSF, cognitive tests|ADNI
88 +|PPMI|Parkinson’s Disease|Imaging, biospecimens|[[PPMI>>url:https://www.ppmi-info.org/]]
89 +|GP2|Genetic Data for PD|Whole-genome sequencing|[[GP2>>url:https://gp2.org/]]
90 +|Enroll-HD|Huntington’s Disease|Clinical, genetic, imaging|[[Enroll-HD>>url:https://enroll-hd.org/]]
91 +|GAAIN|Alzheimer's & Cognitive Decline|Multi-source data aggregation|[[GAAIN>>url:https://www.gaain.org/]]
92 +|UK Biobank|Population-wide studies|Genetic, imaging, health records|[[UK Biobank>>url:https://www.ukbiobank.ac.uk/]]
93 +|DPUK|Dementia & Aging|Imaging, genetics, lifestyle factors|[[DPUK>>url:https://www.dementiasplatform.uk/]]
94 +|PRION Registry|Prion Diseases|Clinical and genetic data|[[PRION Registry>>url:https://www.prionalliance.org/]]
95 +|DECIPHER|Rare Genetic Disorders|Genomic variants|DECIPHER
84 84  
97 +If you know a relevant dataset, submit a proposal in [[GitHub Issues>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]].
98 +
85 85  ----
86 86  
87 -=== **6. Collaborative Development** ===
101 +== **Collaboration & Partnerships** ==
88 88  
89 -The project is open to contributions from researchers, clinicians, and developers. Key tools include:
103 +=== **Where to Insert This** ===
90 90  
91 -* **Jupyter Notebooks**: For data analysis and pipeline development.
92 -** Example: [[probabilistic imputation>>https://drive.ebrains.eu/f/4f69ab52f7734ef48217/]]
93 -* **Wiki Pages**: For documenting methods and results.
94 -* **Drive and Bucket**: For sharing code, data, and outputs.
105 +* GitHub: [[docs/collaboration.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/collaboration.md]]
106 +* EBRAINS Wiki: Collabs/neurodiagnoses/Collaborations
95 95  
108 +=== **Partnering with Data Providers** ===
109 +
110 +Beyond using existing datasets, Neurodiagnoses seeks partnerships with data repositories to:
111 +
112 +* Enable direct API-based data integration for real-time processing.
113 +* Co-develop harmonized AI-ready datasets with standardized annotations.
114 +* Secure funding opportunities through joint grant applications.
115 +
116 +=== **Interested in Partnering?** ===
117 +
118 +If you represent a research consortium or database provider, reach out to explore data-sharing agreements.
119 +
120 +* Contact: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]
121 +
96 96  ----
97 97  
98 -=== **7. Tools and Technologies** ===
124 +== **Final Notes** ==
99 99  
100 -* **Programming Languages**: Python for AI and data processing.
101 -* **Frameworks**:
102 -** TensorFlow and PyTorch for machine learning.
103 -** Flask or FastAPI for backend services.
104 -* **Visualization**: Plotly and Matplotlib for interactive and static visualizations.
105 -* **EBRAINS Services**:
106 -** Collaboratory Lab for running Notebooks.
107 -** Buckets for storing large datasets.
126 +Neurodiagnoses continuously expands its data ecosystem to support AI-driven clinical decision-making. Researchers and institutions are encouraged to contribute new datasets and methodologies.
127 +
128 +For additional technical documentation:
129 +
130 +* [[GitHub Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]]
131 +* [[EBRAINS Collaboration Page>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]]
132 +
133 +If you experience issues integrating data, open a [[GitHub Issue>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]] or consult the EBRAINS Neurodiagnoses Forum.