Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 4.1
edited by manuelmenendez
on 2025/01/27 23:46
on 2025/01/27 23:46
Change comment:
There is no comment for this version
To version 18.1
edited by manuelmenendez
on 2025/02/13 12:52
on 2025/02/13 12:52
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,107 +1,133 @@ 1 -== =**Overview** ===1 +== **Overview** == 2 2 3 - This section describes the step-by-step process used in the **Neurodiagnoses**project todevelop a novel diagnostic framework for neurological diseases. The methodology integratesartificial intelligence(AI),biomedicalontologies, andcomputationalneuroscience tocreateastructured,interpretable,and scalable diagnosticsystem.3 +Neurodiagnoses develops a tridimensional diagnostic framework for CNS diseases, incorporating AI-powered annotation tools to improve interpretability, standardization, and clinical utility. The methodology integrates multi-modal data, including genetic, neuroimaging, neurophysiological, and biomarker datasets, and applies machine learning models to generate structured, explainable diagnostic outputs. 4 4 5 5 ---- 6 6 7 -== =**1.DataIntegration** ===7 +== **How to Use External Databases in Neurodiagnoses** == 8 8 9 - ====**DataSources**====9 +To enhance the accuracy of our diagnostic models, Neurodiagnoses integrates data from multiple biomedical and neurological research databases. If you are a researcher, follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework. 10 10 11 -* **Biomedical Ontologies**: 12 -** Human Phenotype Ontology (HPO) for phenotypic abnormalities. 13 -** Gene Ontology (GO) for molecular and cellular processes. 14 -* **Neuroimaging Datasets**: 15 -** Example: Alzheimer’s Disease Neuroimaging Initiative (ADNI), OpenNeuro. 16 -* **Clinical and Biomarker Data**: 17 -** Anonymized clinical reports, molecular biomarkers, and test results. 11 +=== **Potential Data Sources** === 18 18 19 - ====**DataPreprocessing**====13 +Neurodiagnoses maintains an updated list of potential biomedical databases relevant to neurodegenerative diseases. 20 20 21 -1. **Standardization**: Ensure all data sources are normalized to a common format. 22 -1. **Feature Selection**: Identify relevant features for diagnosis (e.g., biomarkers, imaging scores). 23 -1. **Data Cleaning**: Handle missing values and remove duplicates. 15 +* Reference: [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 24 24 25 - ----17 +=== **1. Register for Access** === 26 26 27 - ===**2.AI-BasedAnalysis**===19 +Each external database requires individual registration and access approval. Follow the official guidelines of each database provider. 28 28 29 -==== **Model Development** ==== 21 +* Ensure that you have completed all ethical approvals and data access agreements before integrating datasets into Neurodiagnoses. 22 +* Some repositories require a Data Usage Agreement (DUA) before downloading sensitive medical data. 30 30 31 -* **Embedding Models**: Use pre-trained models like BioBERT or BioLORD for text data. 32 -* **Classification Models**: 33 -** Algorithms: Random Forest, Support Vector Machines (SVM), or neural networks. 34 -** Purpose: Predict the likelihood of specific neurological conditions based on input data. 24 +=== **2. Download & Prepare Data** === 35 35 36 - ====**DimensionalityReduction andInterpretability** ====26 +Once access is granted, download datasets while complying with data usage policies. Ensure that the files meet Neurodiagnoses’ format requirements for smooth integration. 37 37 38 -* Leverage [[DEIBO>>https://drive.ebrains.eu/f/8d7157708cde4b258db0/]] (Data-driven Embedding Interpretation Based on Ontologies) to connect model dimensions to ontology concepts. 39 -* Evaluate interpretability using metrics like the Area Under the Interpretability Curve (AUIC). 28 +==== **Supported File Formats** ==== 40 40 41 ----- 30 +* Tabular Data: .csv, .tsv 31 +* Neuroimaging Data: .nii, .dcm 32 +* Genomic Data: .fasta, .vcf 33 +* Clinical Metadata: .json, .xml 42 42 43 -=== ** 3. DiagnosticFramework** ===35 +==== **Mandatory Fields for Integration** ==== 44 44 45 -==== **Axes of Diagnosis** ==== 37 +|=Field Name|=Description 38 +|Subject ID|Unique patient identifier 39 +|Diagnosis|Standardized disease classification 40 +|Biomarkers|CSF, plasma, or imaging biomarkers 41 +|Genetic Data|Whole-genome or exome sequencing 42 +|Neuroimaging Metadata|MRI/PET acquisition parameters 46 46 47 - Theframeworkorganizesdiagnosticdataintothreeaxes:44 +=== **3. Upload Data to Neurodiagnoses** === 48 48 49 -1. **Etiology**: Genetic and environmental risk factors. 50 -1. **Molecular Markers**: Biomarkers such as amyloid-beta, tau, and alpha-synuclein. 51 -1. **Neuroanatomical Correlations**: Results from neuroimaging (e.g., MRI, PET). 46 +Once preprocessed, data can be uploaded to EBRAINS or GitHub. 52 52 53 -==== **Recommendation System** ==== 48 +* ((( 49 +**Option 1: Upload to EBRAINS Bucket** 54 54 55 -* Suggests additional tests or biomarkers if gaps are detected in the data. 56 -* Prioritizes tests based on clinical impact and cost-effectiveness. 51 +* Location: [[EBRAINS Neurodiagnoses Bucket>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]] 52 +* Ensure correct metadata tagging before submission. 53 +))) 54 +* ((( 55 +**Option 2: Contribute via GitHub Repository** 57 57 58 ----- 57 +* Location: [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]] 58 +* Create a new folder under /data/ and include dataset description. 59 +))) 59 59 60 - ===**4. ComputationalWorkflow**===61 +//Note: For large datasets, please contact the project administrators before uploading.// 61 61 62 -1. **Data Loading**: Import data from storage (Drive or Bucket). 63 -1. **Feature Engineering**: Generate derived features from the raw data. 64 -1. **Model Training**: 65 -1*. Split data into training, validation, and test sets. 66 -1*. Train models with cross-validation to ensure robustness. 67 -1. **Evaluation**: 68 -1*. Metrics: Accuracy, F1-Score, AUIC for interpretability. 69 -1*. Compare against baseline models and domain benchmarks. 63 +=== **4. Integrate Data into AI Models** === 70 70 65 +Once uploaded, datasets must be harmonized and formatted before AI model training. 66 + 67 +==== **Steps for Data Integration** ==== 68 + 69 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 70 +* Standardize neuroimaging and biomarker formats using harmonization tools. 71 +* Use machine learning models to handle missing data and feature extraction. 72 +* Train AI models with newly integrated patient cohorts. 73 +* Reference: [[Detailed instructions can be found in docs/data_processing.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]]. 74 + 71 71 ---- 72 72 73 -== =**5. Validation** ===77 +== **Database Sources Table** == 74 74 75 -=== =**InternalValidation** ====79 +=== **Where to Insert This** === 76 76 77 -* Testthesystemusing simulated datasets andknownlinical78 -* Fine-tunemodels basedon validation results.81 +* GitHub: [[docs/data_sources.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_sources.md]] 82 +* EBRAINS Wiki: Collabs/neurodiagnoses/Data Sources 79 79 80 -=== =**ExternalValidation** ====84 +=== **Key Databases for Neurodiagnoses** === 81 81 82 -* Collaborate with research institutions and hospitals to test the system in real-world settings. 83 -* Use anonymized patient data to ensure privacy compliance. 86 +|=Database|=Focus Area|=Data Type|=Access Link 87 +|ADNI|Alzheimer's Disease|MRI, PET, CSF, cognitive tests|ADNI 88 +|PPMI|Parkinson’s Disease|Imaging, biospecimens|[[PPMI>>url:https://www.ppmi-info.org/]] 89 +|GP2|Genetic Data for PD|Whole-genome sequencing|[[GP2>>url:https://gp2.org/]] 90 +|Enroll-HD|Huntington’s Disease|Clinical, genetic, imaging|[[Enroll-HD>>url:https://enroll-hd.org/]] 91 +|GAAIN|Alzheimer's & Cognitive Decline|Multi-source data aggregation|[[GAAIN>>url:https://www.gaain.org/]] 92 +|UK Biobank|Population-wide studies|Genetic, imaging, health records|[[UK Biobank>>url:https://www.ukbiobank.ac.uk/]] 93 +|DPUK|Dementia & Aging|Imaging, genetics, lifestyle factors|[[DPUK>>url:https://www.dementiasplatform.uk/]] 94 +|PRION Registry|Prion Diseases|Clinical and genetic data|[[PRION Registry>>url:https://www.prionalliance.org/]] 95 +|DECIPHER|Rare Genetic Disorders|Genomic variants|DECIPHER 84 84 97 +If you know a relevant dataset, submit a proposal in [[GitHub Issues>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]]. 98 + 85 85 ---- 86 86 87 -== =**6.Collaborative Development** ===101 +== **Collaboration & Partnerships** == 88 88 89 - Theprojectis opentocontributionsfrom researchers,clinicians,and developers. Key tools include:103 +=== **Where to Insert This** === 90 90 91 -* **Jupyter Notebooks**: For data analysis and pipeline development. 92 -** Example: [[probabilistic imputation>>https://drive.ebrains.eu/f/4f69ab52f7734ef48217/]] 93 -* **Wiki Pages**: For documenting methods and results. 94 -* **Drive and Bucket**: For sharing code, data, and outputs. 105 +* GitHub: [[docs/collaboration.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/collaboration.md]] 106 +* EBRAINS Wiki: Collabs/neurodiagnoses/Collaborations 95 95 108 +=== **Partnering with Data Providers** === 109 + 110 +Beyond using existing datasets, Neurodiagnoses seeks partnerships with data repositories to: 111 + 112 +* Enable direct API-based data integration for real-time processing. 113 +* Co-develop harmonized AI-ready datasets with standardized annotations. 114 +* Secure funding opportunities through joint grant applications. 115 + 116 +=== **Interested in Partnering?** === 117 + 118 +If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 119 + 120 +* Contact: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 121 + 96 96 ---- 97 97 98 -== =**7. Toolsand Technologies** ===124 +== **Final Notes** == 99 99 100 - * **ProgrammingLanguages**: Pythonfor AIanddataprocessing.101 - * **Frameworks**:102 - ** TensorFlowandPyTorchfor machinelearning.103 - ** Flask or FastAPI for backend services.104 -* **Visualization**: Plotly and Matplotlibforinteractiveand staticvisualizations.105 -* **EBRAINSServices**:106 - ** Collaboratory Lab for running Notebooks.107 - **Bucketsfor storing large datasets.126 +Neurodiagnoses continuously expands its data ecosystem to support AI-driven clinical decision-making. Researchers and institutions are encouraged to contribute new datasets and methodologies. 127 + 128 +For additional technical documentation: 129 + 130 +* [[GitHub Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]] 131 +* [[EBRAINS Collaboration Page>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]] 132 + 133 +If you experience issues integrating data, open a [[GitHub Issue>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]] or consult the EBRAINS Neurodiagnoses Forum.