Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 4.2
edited by manuelmenendez
on 2025/01/29 19:10
on 2025/01/29 19:10
Change comment:
There is no comment for this version
To version 18.1
edited by manuelmenendez
on 2025/02/13 12:52
on 2025/02/13 12:52
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,109 +1,133 @@ 1 -== =**Overview** ===1 +== **Overview** == 2 2 3 - This section describes the step-by-step process used in the **Neurodiagnoses**project todevelop a novel diagnostic framework for neurological diseases. The methodology integratesartificial intelligence(AI),biomedicalontologies, andcomputationalneuroscience tocreateastructured,interpretable,and scalable diagnosticsystem.3 +Neurodiagnoses develops a tridimensional diagnostic framework for CNS diseases, incorporating AI-powered annotation tools to improve interpretability, standardization, and clinical utility. The methodology integrates multi-modal data, including genetic, neuroimaging, neurophysiological, and biomarker datasets, and applies machine learning models to generate structured, explainable diagnostic outputs. 4 4 5 5 ---- 6 6 7 -== =**1.DataIntegration** ===7 +== **How to Use External Databases in Neurodiagnoses** == 8 8 9 - ====**DataSources**====9 +To enhance the accuracy of our diagnostic models, Neurodiagnoses integrates data from multiple biomedical and neurological research databases. If you are a researcher, follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework. 10 10 11 -* **Biomedical Ontologies**: 12 -** Human Phenotype Ontology (HPO) for phenotypic abnormalities. 13 -** Gene Ontology (GO) for molecular and cellular processes. 14 -* **Neuroimaging Datasets**: 15 -** Example: Alzheimer’s Disease Neuroimaging Initiative (ADNI), OpenNeuro. 16 -* **Clinical and Biomarker Data**: 17 -** Anonymized clinical reports, molecular biomarkers, and test results. 11 +=== **Potential Data Sources** === 18 18 13 +Neurodiagnoses maintains an updated list of potential biomedical databases relevant to neurodegenerative diseases. 19 19 20 - ====**DataPreprocessing** ====15 +* Reference: [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 21 21 22 -1. **Standardization**: Ensure all data sources are normalized to a common format. 23 -1. **Feature Selection**: Identify relevant features for diagnosis (e.g., biomarkers, imaging scores). 24 -1. **Data Cleaning**: Handle missing values and remove duplicates. 17 +=== **1. Register for Access** === 25 25 26 - ----19 +Each external database requires individual registration and access approval. Follow the official guidelines of each database provider. 27 27 28 -=== **2. AI-Based Analysis** === 21 +* Ensure that you have completed all ethical approvals and data access agreements before integrating datasets into Neurodiagnoses. 22 +* Some repositories require a Data Usage Agreement (DUA) before downloading sensitive medical data. 29 29 30 -=== =**ModelDevelopment** ====24 +=== **2. Download & Prepare Data** === 31 31 32 -* **Embedding Models**: Use pre-trained models like BioBERT or BioLORD for text data. 33 -* **Classification Models**: 34 -** Algorithms: Random Forest, Support Vector Machines (SVM), or neural networks. 35 -** Purpose: Predict the likelihood of specific neurological conditions based on input data. 26 +Once access is granted, download datasets while complying with data usage policies. Ensure that the files meet Neurodiagnoses’ format requirements for smooth integration. 36 36 37 -==== ** Dimensionality Reductionand Interpretability** ====28 +==== **Supported File Formats** ==== 38 38 39 -* Leverage [[DEIBO>>https://drive.ebrains.eu/f/8d7157708cde4b258db0/]] (Data-driven Embedding Interpretation Based on Ontologies) to connect model dimensions to ontology concepts. 40 -* Evaluate interpretability using metrics like the Area Under the Interpretability Curve (AUIC). 30 +* Tabular Data: .csv, .tsv 31 +* Neuroimaging Data: .nii, .dcm 32 +* Genomic Data: .fasta, .vcf 33 +* Clinical Metadata: .json, .xml 41 41 42 - ----35 +==== **Mandatory Fields for Integration** ==== 43 43 44 -=== **3. Diagnostic Framework** === 37 +|=Field Name|=Description 38 +|Subject ID|Unique patient identifier 39 +|Diagnosis|Standardized disease classification 40 +|Biomarkers|CSF, plasma, or imaging biomarkers 41 +|Genetic Data|Whole-genome or exome sequencing 42 +|Neuroimaging Metadata|MRI/PET acquisition parameters 45 45 46 -=== =**AxesofDiagnosis** ====44 +=== **3. Upload Data to Neurodiagnoses** === 47 47 48 - Theframeworkorganizesdiagnosticdataintothreeaxes:46 +Once preprocessed, data can be uploaded to EBRAINS or GitHub. 49 49 50 -1. **Etiology**: Genetic and environmental risk factors. 51 -1. **Molecular Markers**: Biomarkers such as amyloid-beta, tau, and alpha-synuclein. 52 -1. **Neuroanatomical Correlations**: Results from neuroimaging (e.g., MRI, PET). 48 +* ((( 49 +**Option 1: Upload to EBRAINS Bucket** 53 53 54 -==== **Recommendation System** ==== 51 +* Location: [[EBRAINS Neurodiagnoses Bucket>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]] 52 +* Ensure correct metadata tagging before submission. 53 +))) 54 +* ((( 55 +**Option 2: Contribute via GitHub Repository** 55 55 56 -* Suggests additional tests or biomarkers if gaps are detected in the data. 57 -* Prioritizes tests based on clinical impact and cost-effectiveness. 57 +* Location: [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]] 58 +* Create a new folder under /data/ and include dataset description. 59 +))) 58 58 59 - ----61 +//Note: For large datasets, please contact the project administrators before uploading.// 60 60 61 -=== **4. ComputationalWorkflow** ===63 +=== **4. Integrate Data into AI Models** === 62 62 63 -1. **Data Loading**: Import data from storage (Drive or Bucket). 64 -1. **Feature Engineering**: Generate derived features from the raw data. 65 -1. **Model Training**: 66 -1*. Split data into training, validation, and test sets. 67 -1*. Train models with cross-validation to ensure robustness. 68 -1. **Evaluation**: 69 -1*. Metrics: Accuracy, F1-Score, AUIC for interpretability. 70 -1*. Compare against baseline models and domain benchmarks. 65 +Once uploaded, datasets must be harmonized and formatted before AI model training. 71 71 67 +==== **Steps for Data Integration** ==== 68 + 69 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 70 +* Standardize neuroimaging and biomarker formats using harmonization tools. 71 +* Use machine learning models to handle missing data and feature extraction. 72 +* Train AI models with newly integrated patient cohorts. 73 +* Reference: [[Detailed instructions can be found in docs/data_processing.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]]. 74 + 72 72 ---- 73 73 74 -== =**5. Validation** ===77 +== **Database Sources Table** == 75 75 76 -=== =**InternalValidation** ====79 +=== **Where to Insert This** === 77 77 78 -* Testthesystemusing simulated datasets andknownlinical79 -* Fine-tunemodels basedon validation results.81 +* GitHub: [[docs/data_sources.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_sources.md]] 82 +* EBRAINS Wiki: Collabs/neurodiagnoses/Data Sources 80 80 81 -=== =**ExternalValidation** ====84 +=== **Key Databases for Neurodiagnoses** === 82 82 83 -* Collaborate with research institutions and hospitals to test the system in real-world settings. 84 -* Use anonymized patient data to ensure privacy compliance. 86 +|=Database|=Focus Area|=Data Type|=Access Link 87 +|ADNI|Alzheimer's Disease|MRI, PET, CSF, cognitive tests|ADNI 88 +|PPMI|Parkinson’s Disease|Imaging, biospecimens|[[PPMI>>url:https://www.ppmi-info.org/]] 89 +|GP2|Genetic Data for PD|Whole-genome sequencing|[[GP2>>url:https://gp2.org/]] 90 +|Enroll-HD|Huntington’s Disease|Clinical, genetic, imaging|[[Enroll-HD>>url:https://enroll-hd.org/]] 91 +|GAAIN|Alzheimer's & Cognitive Decline|Multi-source data aggregation|[[GAAIN>>url:https://www.gaain.org/]] 92 +|UK Biobank|Population-wide studies|Genetic, imaging, health records|[[UK Biobank>>url:https://www.ukbiobank.ac.uk/]] 93 +|DPUK|Dementia & Aging|Imaging, genetics, lifestyle factors|[[DPUK>>url:https://www.dementiasplatform.uk/]] 94 +|PRION Registry|Prion Diseases|Clinical and genetic data|[[PRION Registry>>url:https://www.prionalliance.org/]] 95 +|DECIPHER|Rare Genetic Disorders|Genomic variants|DECIPHER 85 85 97 +If you know a relevant dataset, submit a proposal in [[GitHub Issues>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]]. 98 + 86 86 ---- 87 87 88 -== =**6.Collaborative Development** ===101 +== **Collaboration & Partnerships** == 89 89 90 - Theprojectis opentocontributionsfrom researchers,clinicians,and developers. Key tools include:103 +=== **Where to Insert This** === 91 91 92 -* **Jupyter Notebooks**: For data analysis and pipeline development. 93 -** Example: [[probabilistic imputation>>https://drive.ebrains.eu/f/4f69ab52f7734ef48217/]] 94 -* **Wiki Pages**: For documenting methods and results. 95 -* **Drive and Bucket**: For sharing code, data, and outputs. 96 -* **Related projects: **For instance: [[//Beyond the hype: AI in dementia – from early risk detection to disease treatment//>>https://www.lethe-project.eu/beyond-the-hype-ai-in-dementia-from-early-risk-detection-to-disease-treatment/]] 105 +* GitHub: [[docs/collaboration.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/collaboration.md]] 106 +* EBRAINS Wiki: Collabs/neurodiagnoses/Collaborations 97 97 108 +=== **Partnering with Data Providers** === 109 + 110 +Beyond using existing datasets, Neurodiagnoses seeks partnerships with data repositories to: 111 + 112 +* Enable direct API-based data integration for real-time processing. 113 +* Co-develop harmonized AI-ready datasets with standardized annotations. 114 +* Secure funding opportunities through joint grant applications. 115 + 116 +=== **Interested in Partnering?** === 117 + 118 +If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 119 + 120 +* Contact: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 121 + 98 98 ---- 99 99 100 -== =**7. Toolsand Technologies** ===124 +== **Final Notes** == 101 101 102 - * **ProgrammingLanguages**: Pythonfor AIanddataprocessing.103 - * **Frameworks**:104 - ** TensorFlowandPyTorchfor machinelearning.105 - ** Flask or FastAPI for backend services.106 -* **Visualization**: Plotly and Matplotlibforinteractiveand staticvisualizations.107 -* **EBRAINSServices**:108 - ** Collaboratory Lab for running Notebooks.109 - **Bucketsfor storing large datasets.126 +Neurodiagnoses continuously expands its data ecosystem to support AI-driven clinical decision-making. Researchers and institutions are encouraged to contribute new datasets and methodologies. 127 + 128 +For additional technical documentation: 129 + 130 +* [[GitHub Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]] 131 +* [[EBRAINS Collaboration Page>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]] 132 + 133 +If you experience issues integrating data, open a [[GitHub Issue>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]] or consult the EBRAINS Neurodiagnoses Forum.