Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 4.3
edited by manuelmenendez
on 2025/01/29 19:11
Change comment: There is no comment for this version
To version 12.2
edited by manuelmenendez
on 2025/02/09 09:54
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,109 +1,273 @@
1 -=== **Overview** ===
1 +==== **Overview** ====
2 2  
3 -This section describes the step-by-step process used in the **Neurodiagnoses** project to develop a novel diagnostic framework for neurological diseases. The methodology integrates artificial intelligence (AI), biomedical ontologies, and computational neuroscience to create a structured, interpretable, and scalable diagnostic system.
3 +This project develops a **tridimensional diagnostic framework** for **CNS diseases**, incorporating **AI-powered annotation tools** to improve **interpretability, standardization, and clinical utility**. The methodology integrates **multi-modal data**, including **genetic, neuroimaging, neurophysiological, and biomarker datasets**, and applies **machine learning models** to generate **structured, explainable diagnostic outputs**.
4 4  
5 +=== **Workflow** ===
6 +
7 +1. (((
8 +**We Use GitHub to [[Store and develop AI models, scripts, and annotation pipelines.>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/discussions]]**
9 +
10 +* Create a **GitHub repository** for AI scripts and models.
11 +* Use **GitHub Projects** to manage research milestones.
12 +)))
13 +1. (((
14 +**We Use EBRAINS for Data & Collaboration**
15 +
16 +* Store **biomarker and neuroimaging data** in **EBRAINS Buckets**.
17 +* Run **Jupyter Notebooks** in **EBRAINS Lab** to test AI models.
18 +* Use **EBRAINS Wiki** for structured documentation and research discussion.
19 +)))
20 +
5 5  ----
6 6  
7 7  === **1. Data Integration** ===
8 8  
25 +== Overview ==
26 +
27 +
28 +Neurodiagnoses integrates clinical data via the **EBRAINS Medical Informatics Platform (MIP)**. MIP federates decentralized clinical data, allowing Neurodiagnoses to securely access and process sensitive information for AI-based diagnostics.
29 +
30 +== How It Works ==
31 +
32 +
33 +1. (((
34 +**Authentication & API Access:**
35 +
36 +* Users must have an **EBRAINS account**.
37 +* Neurodiagnoses uses **secure API endpoints** to fetch clinical data (e.g., from the **Federation for Dementia**).
38 +)))
39 +1. (((
40 +**Data Mapping & Harmonization:**
41 +
42 +* Retrieved data is **normalized** and converted to standard formats (.csv, .json).
43 +* Data from **multiple sources** is harmonized to ensure consistency for AI processing.
44 +)))
45 +1. (((
46 +**Security & Compliance:**
47 +
48 +* All data access is **logged and monitored**.
49 +* Data remains on **MIP servers** using **federated learning techniques** when possible.
50 +* Access is granted only after signing a **Data Usage Agreement (DUA)**.
51 +)))
52 +
53 +== Implementation Steps ==
54 +
55 +
56 +1. Clone the repository.
57 +1. Configure your **EBRAINS API credentials** in mip_integration.py.
58 +1. Run the script to **download and harmonize clinical data**.
59 +1. Process the data for **AI model training**.
60 +
61 +For more detailed instructions, please refer to the **[[MIP Documentation>>url:https://mip.ebrains.eu/]]**.
62 +
63 +----
64 +
65 += Data Processing & Integration with Clinica.Run =
66 +
67 +
68 +== Overview ==
69 +
70 +
71 +Neurodiagnoses now supports **Clinica.Run**, an open-source neuroimaging platform designed for **multimodal data processing and reproducible neuroscience workflows**.
72 +
73 +== How It Works ==
74 +
75 +
76 +1. (((
77 +**Neuroimaging Preprocessing:**
78 +
79 +* MRI, PET, EEG data is preprocessed using **Clinica.Run pipelines**.
80 +* Supports **longitudinal and cross-sectional analyses**.
81 +)))
82 +1. (((
83 +**Automated Biomarker Extraction:**
84 +
85 +* Standardized extraction of **volumetric, metabolic, and functional biomarkers**.
86 +* Integration with machine learning models in Neurodiagnoses.
87 +)))
88 +1. (((
89 +**Data Security & Compliance:**
90 +
91 +* Clinica.Run operates in **compliance with GDPR and HIPAA**.
92 +* Neuroimaging data remains **within the original storage environment**.
93 +)))
94 +
95 +== Implementation Steps ==
96 +
97 +
98 +1. Install **Clinica.Run** dependencies.
99 +1. Configure your **Clinica.Run pipeline** in clinica_run_config.json.
100 +1. Run the pipeline for **preprocessing and biomarker extraction**.
101 +1. Use processed neuroimaging data for **AI-driven diagnostics** in Neurodiagnoses.
102 +
103 +For further information, refer to **[[Clinica.Run Documentation>>url:https://clinica.run/]]**.
104 +
105 +==== ====
106 +
9 9  ==== **Data Sources** ====
10 10  
11 -* **Biomedical Ontologies**:
12 -** Human Phenotype Ontology (HPO) for phenotypic abnormalities.
13 -** Gene Ontology (GO) for molecular and cellular processes.
14 -* **Neuroimaging Datasets**:
15 -** Example: Alzheimer’s Disease Neuroimaging Initiative (ADNI), OpenNeuro.
16 -* **Clinical and Biomarker Data**:
17 -** Anonymized clinical reports, molecular biomarkers, and test results.
109 +[[List of potential sources of databases>>https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]]
18 18  
111 +**Biomedical Ontologies & Databases:**
19 19  
20 -==== **Data Preprocessing** ====
113 +* **Human Phenotype Ontology (HPO)** for symptom annotation.
114 +* **Gene Ontology (GO)** for molecular and cellular processes.
21 21  
22 -1. **Standardization**: Ensure all data sources are normalized to a common format.
23 -1. **Feature Selection**: Identify relevant features for diagnosis (e.g., biomarkers, imaging scores).
24 -1. **Data Cleaning**: Handle missing values and remove duplicates.
116 +**Dimensionality Reduction and Interpretability:**
25 25  
118 +* **Evaluate interpretability** using metrics like the **Area Under the Interpretability Curve (AUIC)**.
119 +* **Leverage [[DEIBO>>https://github.com/Mellandd/DEIBO]] (Data-driven Embedding Interpretation Based on Ontologies)** to connect model dimensions to ontology concepts.
120 +
121 +**Neuroimaging & EEG/MEG Data:**
122 +
123 +* **MRI volumetric measures** for brain atrophy tracking.
124 +* **EEG functional connectivity patterns** (AI-Mind).
125 +
126 +**Clinical & Biomarker Data:**
127 +
128 +* **CSF biomarkers** (Amyloid-beta, Tau, Neurofilament Light).
129 +* **Sleep monitoring and actigraphy data** (ADIS).
130 +
131 +**Federated Learning Integration:**
132 +
133 +* **Secure multi-center data harmonization** (PROMINENT).
134 +
26 26  ----
27 27  
137 +==== **Annotation System for Multi-Modal Data** ====
138 +
139 +To ensure **structured integration of diverse datasets**, **Neurodiagnoses** will implement an **AI-driven annotation system**, which will:
140 +
141 +* **Assign standardized metadata tags** to diagnostic features.
142 +* **Provide contextual explanations** for AI-based classifications.
143 +* **Track temporal disease progression annotations** to identify long-term trends.
144 +
145 +----
146 +
28 28  === **2. AI-Based Analysis** ===
29 29  
30 -==== **Model Development** ====
149 +==== **Machine Learning & Deep Learning Models** ====
31 31  
32 -* **Embedding Models**: Use pre-trained models like BioBERT or BioLORD for text data.
33 -* **Classification Models**:
34 -** Algorithms: Random Forest, Support Vector Machines (SVM), or neural networks.
35 -** Purpose: Predict the likelihood of specific neurological conditions based on input data.
151 +**Risk Prediction Models:**
36 36  
37 -==== **Dimensionality Reduction and Interpretability** ====
153 +* **LETHE’s cognitive risk prediction model** integrated into the annotation framework.
38 38  
39 -* Leverage [[DEIBO>>https://drive.ebrains.eu/f/8d7157708cde4b258db0/]] (Data-driven Embedding Interpretation Based on Ontologies) to connect model dimensions to ontology concepts.
40 -* Evaluate interpretability using metrics like the Area Under the Interpretability Curve (AUIC).
155 +**Biomarker Classification & Probabilistic Imputation:**
41 41  
157 +* **KNN Imputer** and **Bayesian models** used for handling **missing biomarker data**.
158 +
159 +**Neuroimaging Feature Extraction:**
160 +
161 +* **MRI & EEG data** annotated with **neuroanatomical feature labels**.
162 +
163 +==== **AI-Powered Annotation System** ====
164 +
165 +* Uses **SHAP-based interpretability tools** to explain model decisions.
166 +* Generates **automated clinical annotations** in structured reports.
167 +* Links findings to **standardized medical ontologies** (e.g., **SNOMED, HPO**).
168 +
42 42  ----
43 43  
44 -=== **3. Diagnostic Framework** ===
171 +=== **3. Diagnostic Framework & Clinical Decision Support** ===
45 45  
46 -==== **Axes of Diagnosis** ====
173 +==== **Tridimensional Diagnostic Axes** ====
47 47  
48 -The framework organizes diagnostic data into three axes:
175 +**Axis 1: Etiology (Pathogenic Mechanisms)**
49 49  
50 -1. **Etiology**: Genetic and environmental risk factors.
51 -1. **Molecular Markers**: Biomarkers such as amyloid-beta, tau, and alpha-synuclein.
52 -1. **Neuroanatomical Correlations**: Results from neuroimaging (e.g., MRI, PET).
177 +* Classification based on **genetic markers, cellular pathways, and environmental risk factors**.
178 +* **AI-assisted annotation** provides **causal interpretations** for clinical use.
53 53  
54 -==== **Recommendation System** ====
180 +**Axis 2: Molecular Markers & Biomarkers**
55 55  
56 -* Suggests additional tests or biomarkers if gaps are detected in the data.
57 -* Prioritizes tests based on clinical impact and cost-effectiveness.
182 +* **Integration of CSF, blood, and neuroimaging biomarkers**.
183 +* **Structured annotation** highlights **biological pathways linked to diagnosis**.
58 58  
185 +**Axis 3: Neuroanatomoclinical Correlations**
186 +
187 +* **MRI and EEG data** provide anatomical and functional insights.
188 +* **AI-generated progression maps** annotate **brain structure-function relationships**.
189 +
59 59  ----
60 60  
61 -=== **4. Computational Workflow** ===
192 +=== **4. Computational Workflow & Annotation Pipelines** ===
62 62  
63 -1. **Data Loading**: Import data from storage (Drive or Bucket).
64 -1. **Feature Engineering**: Generate derived features from the raw data.
65 -1. **Model Training**:
66 -1*. Split data into training, validation, and test sets.
67 -1*. Train models with cross-validation to ensure robustness.
68 -1. **Evaluation**:
69 -1*. Metrics: Accuracy, F1-Score, AUIC for interpretability.
70 -1*. Compare against baseline models and domain benchmarks.
194 +==== **Data Processing Steps** ====
71 71  
196 +**Data Ingestion:**
197 +
198 +* **Harmonized datasets** stored in **EBRAINS Bucket**.
199 +* **Preprocessing pipelines** clean and standardize data.
200 +
201 +**Feature Engineering:**
202 +
203 +* **AI models** extract **clinically relevant patterns** from **EEG, MRI, and biomarkers**.
204 +
205 +**AI-Generated Annotations:**
206 +
207 +* **Automated tagging** of diagnostic features in **structured reports**.
208 +* **Explainability modules (SHAP, LIME)** ensure transparency in predictions.
209 +
210 +**Clinical Decision Support Integration:**
211 +
212 +* **AI-annotated findings** fed into **interactive dashboards**.
213 +* **Clinicians can adjust, validate, and modify annotations**.
214 +
72 72  ----
73 73  
74 -=== **5. Validation** ===
217 +=== **5. Validation & Real-World Testing** ===
75 75  
76 -==== **Internal Validation** ====
219 +==== **Prospective Clinical Study** ====
77 77  
78 -* Test the system using simulated datasets and known clinical cases.
79 -* Fine-tune models based on validation results.
221 +* **Multi-center validation** of AI-based **annotations & risk stratifications**.
222 +* **Benchmarking against clinician-based diagnoses**.
223 +* **Real-world testing** of AI-powered **structured reporting**.
80 80  
81 -==== **External Validation** ====
225 +==== **Quality Assurance & Explainability** ====
82 82  
83 -* Collaborate with research institutions and hospitals to test the system in real-world settings.
84 -* Use anonymized patient data to ensure privacy compliance.
227 +* **Annotations linked to structured knowledge graphs** for improved transparency.
228 +* **Interactive annotation editor** allows clinicians to validate AI outputs.
85 85  
86 86  ----
87 87  
88 88  === **6. Collaborative Development** ===
89 89  
90 -The project is open to contributions from researchers, clinicians, and developers. Key tools include:
234 +The project is **open to contributions** from **researchers, clinicians, and developers**.
91 91  
236 +**Key tools include:**
237 +
92 92  * **Jupyter Notebooks**: For data analysis and pipeline development.
93 -** Example: [[probabilistic imputation>>https://drive.ebrains.eu/f/4f69ab52f7734ef48217/]]
239 +** Example: **probabilistic imputation**
94 94  * **Wiki Pages**: For documenting methods and results.
95 95  * **Drive and Bucket**: For sharing code, data, and outputs.
96 -* **Collaboration with related projects: **For instance: [[//Beyond the hype: AI in dementia – from early risk detection to disease treatment//>>https://www.lethe-project.eu/beyond-the-hype-ai-in-dementia-from-early-risk-detection-to-disease-treatment/]]
242 +* **Collaboration with related projects**:
243 +** Example: **Beyond the hype: AI in dementia – from early risk detection to disease treatment**
97 97  
98 98  ----
99 99  
100 100  === **7. Tools and Technologies** ===
101 101  
102 -* **Programming Languages**: Python for AI and data processing.
103 -* **Frameworks**:
104 -** TensorFlow and PyTorch for machine learning.
105 -** Flask or FastAPI for backend services.
106 -* **Visualization**: Plotly and Matplotlib for interactive and static visualizations.
107 -* **EBRAINS Services**:
108 -** Collaboratory Lab for running Notebooks.
109 -** Buckets for storing large datasets.
249 +==== **Programming Languages:** ====
250 +
251 +* **Python** for AI and data processing.
252 +
253 +==== **Frameworks:** ====
254 +
255 +* **TensorFlow** and **PyTorch** for machine learning.
256 +* **Flask** or **FastAPI** for backend services.
257 +
258 +==== **Visualization:** ====
259 +
260 +* **Plotly** and **Matplotlib** for interactive and static visualizations.
261 +
262 +==== **EBRAINS Services:** ====
263 +
264 +* **Collaboratory Lab** for running Notebooks.
265 +* **Buckets** for storing large datasets.
266 +
267 +----
268 +
269 +=== **Why This Matters** ===
270 +
271 +* The annotation system ensures that AI-generated insights are structured, interpretable, and clinically meaningful.
272 +* It enables real-time tracking of disease progression across the three diagnostic axes.
273 +* It facilitates integration with electronic health records and decision-support tools, improving AI adoption in clinical workflows.