Changes for page Methodology
Last modified by manuelmenendez on 2025/03/14 08:31
From version 4.3
edited by manuelmenendez
on 2025/01/29 19:11
on 2025/01/29 19:11
Change comment:
There is no comment for this version
To version 19.1
edited by manuelmenendez
on 2025/02/14 13:57
on 2025/02/14 13:57
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,109 +1,207 @@ 1 - ===**Overview**===1 +**# Neurodiagnoses AI: Multimodal AI for Neurodiagnostic Predictions** 2 2 3 -This section describes the step-by-step process used in the **Neurodiagnoses** project to develop a novel diagnostic framework for neurological diseases. The methodology integrates artificial intelligence (AI), biomedical ontologies, and computational neuroscience to create a structured, interpretable, and scalable diagnostic system. 3 +## **Project Overview** 4 +Neurodiagnoses AI implements AI-driven diagnostic and prognostic models for central nervous system (CNS) disorders, adapting the Florey Dementia Index (FDI) methodology to a broader set of neurological conditions. The approach integrates **multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics) and employs **machine learning models** to provide **explainable, real-time diagnostic insights**.## 4 4 5 ----- 6 +## **How to Use External Databases in Neurodiagnoses** 7 +To enhance diagnostic accuracy, Neurodiagnoses integrates data from multiple biomedical and neurological research databases. Researchers can follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework.## 6 6 7 -=== **1. Data Integration** === 9 +### **Potential Data Sources** 10 +Neurodiagnoses maintains an updated list of potential biomedical databases relevant to neurodegenerative diseases. ## 8 8 9 -==== **Data Sources** ==== 12 +**Reference: List of Potential Databases** 13 +- **ADNI**: Alzheimer's Disease data ([ADNI](https://adni.loni.usc.edu)) 14 +- **PPMI**: Parkinson’s Disease Imaging and biospecimens ([PPMI](https://www.ppmi-info.org)) 15 +- **GP2**: Whole-genome sequencing for PD ([GP2](https://gp2.org)) 16 +- **Enroll-HD**: Huntington’s Disease Clinical and genetic data ([Enroll-HD](https://www.enroll-hd.org)) 17 +- **GAAIN**: Multi-source Alzheimer’s data aggregation ([GAAIN](https://gaain.org)) 18 +- **UK Biobank**: Population-wide genetic, imaging, and health records ([UK Biobank](https://www.ukbiobank.ac.uk)) 19 +- **DPUK**: Dementia and Aging data ([DPUK](https://www.dementiasplatform.uk)) 20 +- **PRION Registry**: Prion Diseases clinical and genetic data ([PRION Registry](https://prionregistry.org)) 21 +- **DECIPHER**: Rare genetic disorder genomic variants ([DECIPHER](https://decipher.sanger.ac.uk)) 10 10 11 -* **Biomedical Ontologies**: 12 -** Human Phenotype Ontology (HPO) for phenotypic abnormalities. 13 -** Gene Ontology (GO) for molecular and cellular processes. 14 -* **Neuroimaging Datasets**: 15 -** Example: Alzheimer’s Disease Neuroimaging Initiative (ADNI), OpenNeuro. 16 -* **Clinical and Biomarker Data**: 17 -** Anonymized clinical reports, molecular biomarkers, and test results. 23 +### **1. Register for Access** 24 +- Each external database requires **individual registration** and access approval. 25 +- Ensure compliance with **ethical approvals** and **data usage agreements** before integrating datasets into Neurodiagnoses. 26 +- Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data.## 18 18 28 +### **2. Download & Prepare Data** 29 +- Download datasets while adhering to database usage policies. 30 +- Ensure files meet **Neurodiagnoses format requirements**: 31 + - **Tabular Data**: `.csv`, `.tsv` 32 + - **Neuroimaging Data**: `.nii`, `.dcm` 33 + - **Genomic Data**: `.fasta`, `.vcf` 34 + - **Clinical Metadata**: `.json`, `.xml`## 19 19 20 -==== **Data Preprocessing** ==== 36 +- **Mandatory Fields for Integration**: 37 + - **Subject ID**: Unique patient identifier 38 + - **Diagnosis**: Standardized disease classification 39 + - **Biomarkers**: CSF, plasma, or imaging biomarkers 40 + - **Genetic Data**: Whole-genome or exome sequencing 41 + - **Neuroimaging Metadata**: MRI/PET acquisition parameters 21 21 22 -1. **Standardization**: Ensure all data sources are normalized to a common format. 23 -1. **Feature Selection**: Identify relevant features for diagnosis (e.g., biomarkers, imaging scores). 24 -1. **Data Cleaning**: Handle missing values and remove duplicates. 43 +### **3. Upload Data to Neurodiagnoses** 44 +**Option 1: Upload to EBRAINS Bucket** 45 +- Location: **EBRAINS Neurodiagnoses Bucket** 46 +- Ensure correct **metadata tagging** before submission.## 25 25 26 ----- 48 + **Option 2: Contribute via GitHub Repository** 49 +- Location: **GitHub Data Repository** 50 +- Create a new folder under `/data/` and include a **dataset description**. 51 +- For large datasets, contact project administrators before uploading. 27 27 28 -=== **2. AI-Based Analysis** === 53 +### **4. Integrate Data into AI Models** 54 +- Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**. 55 +- Standardize **neuroimaging and biomarker formats** using harmonization tools. 56 +- Use **machine learning models** to handle missing data and feature extraction. 57 +- Train AI models with **newly integrated patient cohorts**.## 29 29 30 - ====**ModelDevelopment**====59 +**Reference**: See `docs/data_processing.md` for detailed instructions. 31 31 32 -* **Embedding Models**: Use pre-trained models like BioBERT or BioLORD for text data. 33 -* **Classification Models**: 34 -** Algorithms: Random Forest, Support Vector Machines (SVM), or neural networks. 35 -** Purpose: Predict the likelihood of specific neurological conditions based on input data. 61 +## **Collaboration & Partnerships**## 62 +# **Partnering with Data Providers** 63 +Neurodiagnoses seeks partnerships with data repositories to: 64 +- Enable **API-based data integration** for real-time processing. 65 +- Co-develop **harmonized AI-ready datasets** with standardized annotations. 66 +- Secure **funding opportunities** through joint grant applications. 36 36 37 -==== **Dimensionality Reduction and Interpretability** ==== 68 +**Interested in Partnering?** 69 +- If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 70 +- **Contact**: info@neurodiagnoses.com 38 38 39 - *Leverage [[DEIBO>>https://drive.ebrains.eu/f/8d7157708cde4b258db0/]] (Data-driven Embedding Interpretation Based on Ontologies)toconnectmodel dimensions to ontology concepts.40 - * Evaluate interpretabilityusingmetricsliketheAreaUnder theInterpretabilityCurve(AUIC).72 +## **Final Notes** 73 +Neurodiagnoses continuously expands its data ecosystem to support AI-driven clinical decision-making. Researchers and institutions are encouraged to contribute **new datasets and methodologies**.## 41 41 42 ----- 75 +For additional technical documentation: 76 +- **GitHub Repository**: [Neurodiagnoses GitHub](https://github.com/neurodiagnoses) 77 +- **EBRAINS Collaboration Page**: [EBRAINS Neurodiagnoses](https://ebrains.eu/collabs/neurodiagnoses) 43 43 44 - ===**3.DiagnosticFramework**===79 +If you experience issues integrating data, **open a GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**. 45 45 46 -== ==**AxesofDiagnosis** ====81 +== **How to Use External Databases in Neurodiagnoses** == 47 47 48 -The frameworkorganizes diagnosticdata into three axes:83 +To enhance the accuracy of our diagnostic models, Neurodiagnoses integrates data from multiple biomedical and neurological research databases. If you are a researcher, follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework. 49 49 50 -1. **Etiology**: Genetic and environmental risk factors. 51 -1. **Molecular Markers**: Biomarkers such as amyloid-beta, tau, and alpha-synuclein. 52 -1. **Neuroanatomical Correlations**: Results from neuroimaging (e.g., MRI, PET). 85 +=== **Potential Data Sources** === 53 53 54 - ==== **RecommendationSystem**====87 +Neurodiagnoses maintains an updated list of potential biomedical databases relevant to neurodegenerative diseases. 55 55 56 -* Suggests additional tests or biomarkers if gaps are detected in the data. 57 -* Prioritizes tests based on clinical impact and cost-effectiveness. 89 +* Reference: [[List of Potential Databases>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/sources/list_of_potential_databases]] 58 58 59 - ----91 +=== **1. Register for Access** === 60 60 61 - ===**4.ComputationalWorkflow**===93 +Each external database requires individual registration and access approval. Follow the official guidelines of each database provider. 62 62 63 -1. **Data Loading**: Import data from storage (Drive or Bucket). 64 -1. **Feature Engineering**: Generate derived features from the raw data. 65 -1. **Model Training**: 66 -1*. Split data into training, validation, and test sets. 67 -1*. Train models with cross-validation to ensure robustness. 68 -1. **Evaluation**: 69 -1*. Metrics: Accuracy, F1-Score, AUIC for interpretability. 70 -1*. Compare against baseline models and domain benchmarks. 95 +* Ensure that you have completed all ethical approvals and data access agreements before integrating datasets into Neurodiagnoses. 96 +* Some repositories require a Data Usage Agreement (DUA) before downloading sensitive medical data. 71 71 98 +=== **2. Download & Prepare Data** === 99 + 100 +Once access is granted, download datasets while complying with data usage policies. Ensure that the files meet Neurodiagnoses’ format requirements for smooth integration. 101 + 102 +==== **Supported File Formats** ==== 103 + 104 +* Tabular Data: .csv, .tsv 105 +* Neuroimaging Data: .nii, .dcm 106 +* Genomic Data: .fasta, .vcf 107 +* Clinical Metadata: .json, .xml 108 + 109 +==== **Mandatory Fields for Integration** ==== 110 + 111 +|=Field Name|=Description 112 +|Subject ID|Unique patient identifier 113 +|Diagnosis|Standardized disease classification 114 +|Biomarkers|CSF, plasma, or imaging biomarkers 115 +|Genetic Data|Whole-genome or exome sequencing 116 +|Neuroimaging Metadata|MRI/PET acquisition parameters 117 + 118 +=== **3. Upload Data to Neurodiagnoses** === 119 + 120 +Once preprocessed, data can be uploaded to EBRAINS or GitHub. 121 + 122 +* ((( 123 +**Option 1: Upload to EBRAINS Bucket** 124 + 125 +* Location: [[EBRAINS Neurodiagnoses Bucket>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/Bucket]] 126 +* Ensure correct metadata tagging before submission. 127 +))) 128 +* ((( 129 +**Option 2: Contribute via GitHub Repository** 130 + 131 +* Location: [[GitHub Data Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/tree/main/data]] 132 +* Create a new folder under /data/ and include dataset description. 133 +))) 134 + 135 +//Note: For large datasets, please contact the project administrators before uploading.// 136 + 137 +=== **4. Integrate Data into AI Models** === 138 + 139 +Once uploaded, datasets must be harmonized and formatted before AI model training. 140 + 141 +==== **Steps for Data Integration** ==== 142 + 143 +* Open Jupyter Notebooks on EBRAINS to run preprocessing scripts. 144 +* Standardize neuroimaging and biomarker formats using harmonization tools. 145 +* Use machine learning models to handle missing data and feature extraction. 146 +* Train AI models with newly integrated patient cohorts. 147 +* Reference: [[Detailed instructions can be found in docs/data_processing.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_processing.md]]. 148 + 72 72 ---- 73 73 74 -== =**5. Validation** ===151 +== **Database Sources Table** == 75 75 76 -=== =**InternalValidation** ====153 +=== **Where to Insert This** === 77 77 78 -* Testthesystemusing simulated datasets andknownlinical79 -* Fine-tunemodels basedon validation results.155 +* GitHub: [[docs/data_sources.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/data_sources.md]] 156 +* EBRAINS Wiki: Collabs/neurodiagnoses/Data Sources 80 80 81 -=== =**ExternalValidation** ====158 +=== **Key Databases for Neurodiagnoses** === 82 82 83 -* Collaborate with research institutions and hospitals to test the system in real-world settings. 84 -* Use anonymized patient data to ensure privacy compliance. 160 +|=Database|=Focus Area|=Data Type|=Access Link 161 +|ADNI|Alzheimer's Disease|MRI, PET, CSF, cognitive tests|ADNI 162 +|PPMI|Parkinson’s Disease|Imaging, biospecimens|[[PPMI>>url:https://www.ppmi-info.org/]] 163 +|GP2|Genetic Data for PD|Whole-genome sequencing|[[GP2>>url:https://gp2.org/]] 164 +|Enroll-HD|Huntington’s Disease|Clinical, genetic, imaging|[[Enroll-HD>>url:https://enroll-hd.org/]] 165 +|GAAIN|Alzheimer's & Cognitive Decline|Multi-source data aggregation|[[GAAIN>>url:https://www.gaain.org/]] 166 +|UK Biobank|Population-wide studies|Genetic, imaging, health records|[[UK Biobank>>url:https://www.ukbiobank.ac.uk/]] 167 +|DPUK|Dementia & Aging|Imaging, genetics, lifestyle factors|[[DPUK>>url:https://www.dementiasplatform.uk/]] 168 +|PRION Registry|Prion Diseases|Clinical and genetic data|[[PRION Registry>>url:https://www.prionalliance.org/]] 169 +|DECIPHER|Rare Genetic Disorders|Genomic variants|DECIPHER 85 85 171 +If you know a relevant dataset, submit a proposal in [[GitHub Issues>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]]. 172 + 86 86 ---- 87 87 88 -== =**6.Collaborative Development** ===175 +== **Collaboration & Partnerships** == 89 89 90 - Theprojectis opentocontributionsfrom researchers,clinicians,and developers. Key tools include:177 +=== **Where to Insert This** === 91 91 92 -* **Jupyter Notebooks**: For data analysis and pipeline development. 93 -** Example: [[probabilistic imputation>>https://drive.ebrains.eu/f/4f69ab52f7734ef48217/]] 94 -* **Wiki Pages**: For documenting methods and results. 95 -* **Drive and Bucket**: For sharing code, data, and outputs. 96 -* **Collaboration with related projects: **For instance: [[//Beyond the hype: AI in dementia – from early risk detection to disease treatment//>>https://www.lethe-project.eu/beyond-the-hype-ai-in-dementia-from-early-risk-detection-to-disease-treatment/]] 179 +* GitHub: [[docs/collaboration.md>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/docs/collaboration.md]] 180 +* EBRAINS Wiki: Collabs/neurodiagnoses/Collaborations 97 97 182 +=== **Partnering with Data Providers** === 183 + 184 +Beyond using existing datasets, Neurodiagnoses seeks partnerships with data repositories to: 185 + 186 +* Enable direct API-based data integration for real-time processing. 187 +* Co-develop harmonized AI-ready datasets with standardized annotations. 188 +* Secure funding opportunities through joint grant applications. 189 + 190 +=== **Interested in Partnering?** === 191 + 192 +If you represent a research consortium or database provider, reach out to explore data-sharing agreements. 193 + 194 +* Contact: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]] 195 + 98 98 ---- 99 99 100 -== =**7. Toolsand Technologies** ===198 +== **Final Notes** == 101 101 102 - * **ProgrammingLanguages**: Pythonfor AIanddataprocessing.103 - * **Frameworks**:104 - ** TensorFlowandPyTorchfor machinelearning.105 - ** Flask or FastAPI for backend services.106 -* **Visualization**: Plotly and Matplotlibforinteractiveand staticvisualizations.107 -* **EBRAINSServices**:108 - ** Collaboratory Lab for running Notebooks.109 - **Bucketsfor storing large datasets.200 +Neurodiagnoses continuously expands its data ecosystem to support AI-driven clinical decision-making. Researchers and institutions are encouraged to contribute new datasets and methodologies. 201 + 202 +For additional technical documentation: 203 + 204 +* [[GitHub Repository>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses]] 205 +* [[EBRAINS Collaboration Page>>url:https://wiki.ebrains.eu/bin/view/Collabs/neurodiagnoses/]] 206 + 207 +If you experience issues integrating data, open a [[GitHub Issue>>url:https://github.com/Fundacion-de-Neurociencias/neurodiagnoses/issues]] or consult the EBRAINS Neurodiagnoses Forum.