Changes for page Methodology

Last modified by manuelmenendez on 2025/03/14 08:31

From version 4.3
edited by manuelmenendez
on 2025/01/29 19:11
Change comment: There is no comment for this version
To version 20.1
edited by manuelmenendez
on 2025/02/14 14:47
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,109 +1,146 @@
1 -=== **Overview** ===
1 +Here is the updated **Methodology** section for the EBRAINS Wiki, incorporating the **Generalized Neuro Biomarker Ontology Categorization (Neuromarker)** for **biomarker classification across all neurodegenerative diseases**.
2 2  
3 -This section describes the step-by-step process used in the **Neurodiagnoses** project to develop a novel diagnostic framework for neurological diseases. The methodology integrates artificial intelligence (AI), biomedical ontologies, and computational neuroscience to create a structured, interpretable, and scalable diagnostic system.
4 -
5 5  ----
6 6  
7 -=== **1. Data Integration** ===
5 +== **Neurodiagnoses AI: Multimodal AI for Neurodiagnostic Predictions** ==
8 8  
9 -==== **Data Sources** ====
7 +=== **Project Overview** ===
10 10  
11 -* **Biomedical Ontologies**:
12 -** Human Phenotype Ontology (HPO) for phenotypic abnormalities.
13 -** Gene Ontology (GO) for molecular and cellular processes.
14 -* **Neuroimaging Datasets**:
15 -** Example: Alzheimer’s Disease Neuroimaging Initiative (ADNI), OpenNeuro.
16 -* **Clinical and Biomarker Data**:
17 -** Anonymized clinical reports, molecular biomarkers, and test results.
9 +Neurodiagnoses AI implements **AI-driven diagnostic and prognostic models** for central nervous system (CNS) disorders, expanding the **Florey Dementia Index (FDI) methodology** to a broader set of neurological conditions. The approach integrates **multimodal data sources** (EEG, neuroimaging, biomarkers, and genetics) and employs machine learning models to provide **explainable, real-time diagnostic insights**. This framework now incorporates **Neuromarker**, a **generalized biomarker ontology** that categorizes biomarkers across neurodegenerative diseases, enabling **standardized, cross-disease AI training**.
18 18  
11 +== **Neuromarker: Generalized Biomarker Ontology** ==
19 19  
20 -==== **Data Preprocessing** ====
13 +Neuromarker extends the **Common Alzheimer’s Disease Research Ontology (CADRO)** into a **cross-disease biomarker categorization framework** applicable to all neurodegenerative diseases (NDDs). It allows for **standardized classification, AI-based feature extraction, and multimodal integration**.
21 21  
22 -1. **Standardization**: Ensure all data sources are normalized to a common format.
23 -1. **Feature Selection**: Identify relevant features for diagnosis (e.g., biomarkers, imaging scores).
24 -1. **Data Cleaning**: Handle missing values and remove duplicates.
15 +=== **Core Biomarker Categories** ===
25 25  
17 +The following ontology is used within **Neurodiagnoses AI** for biomarker categorization:
18 +
19 +|=**Category**|=**Description**
20 +|**Molecular Biomarkers**|Omics-based markers (genomic, transcriptomic, proteomic, metabolomic, lipidomic)
21 +|**Neuroimaging Biomarkers**|Structural (MRI, CT), Functional (fMRI, PET), Molecular Imaging (tau, amyloid, α-synuclein)
22 +|**Fluid Biomarkers**|CSF, plasma, blood-based markers for tau, amyloid, α-synuclein, TDP-43, GFAP, NfL
23 +|**Neurophysiological Biomarkers**|EEG, MEG, evoked potentials (ERP), sleep-related markers
24 +|**Digital Biomarkers**|Gait analysis, cognitive/speech biomarkers, wearables data, EHR-based markers
25 +|**Clinical Phenotypic Markers**|Standardized clinical scores (MMSE, MoCA, CDR, UPDRS, ALSFRS, UHDRS)
26 +|**Genetic Biomarkers**|Risk alleles (APOE, LRRK2, MAPT, C9orf72, PRNP) and polygenic risk scores
27 +|**Environmental & Lifestyle Factors**|Toxins, infections, diet, microbiome, comorbidities
28 +
26 26  ----
27 27  
28 -=== **2. AI-Based Analysis** ===
31 +== **How to Use External Databases in Neurodiagnoses** ==
29 29  
30 -==== **Model Development** ====
33 +To enhance diagnostic accuracy, Neurodiagnoses AI integrates data from **multiple biomedical and neurological research databases**. Researchers can follow these steps to access, prepare, and integrate data into the Neurodiagnoses framework.
31 31  
32 -* **Embedding Models**: Use pre-trained models like BioBERT or BioLORD for text data.
33 -* **Classification Models**:
34 -** Algorithms: Random Forest, Support Vector Machines (SVM), or neural networks.
35 -** Purpose: Predict the likelihood of specific neurological conditions based on input data.
35 +=== **Potential Data Sources** ===
36 36  
37 -==== **Dimensionality Reduction and Interpretability** ====
37 +Neurodiagnoses maintains an **updated list** of biomedical datasets relevant to neurodegenerative diseases:
38 38  
39 -* Leverage [[DEIBO>>https://drive.ebrains.eu/f/8d7157708cde4b258db0/]] (Data-driven Embedding Interpretation Based on Ontologies) to connect model dimensions to ontology concepts.
40 -* Evaluate interpretability using metrics like the Area Under the Interpretability Curve (AUIC).
39 +* **ADNI**: Alzheimer's Disease Imaging & Biomarkers → [[ADNI>>url:https://adni.loni.usc.edu/]]
40 +* **PPMI**: Parkinson’s Disease Imaging & Biospecimens → [[PPMI>>url:https://www.ppmi-info.org/]]
41 +* **GP2**: Whole-Genome Sequencing for PD → [[GP2>>url:https://gp2.org/]]
42 +* **Enroll-HD**: Huntington’s Disease Clinical & Genetic Data → [[Enroll-HD>>url:https://www.enroll-hd.org/]]
43 +* **GAAIN**: Multi-Source Alzheimer’s Data Aggregation → [[GAAIN>>url:https://gaain.org/]]
44 +* **UK Biobank**: Population-Wide Genetic, Imaging & Health Records → [[UK Biobank>>url:https://www.ukbiobank.ac.uk/]]
45 +* **DPUK**: Dementia & Aging Data → [[DPUK>>url:https://www.dementiasplatform.uk/]]
46 +* **PRION Registry**: Prion Diseases Clinical & Genetic Data → [[PRION Registry>>url:https://prionregistry.org/]]
47 +* **DECIPHER**: Rare Genetic Disorder Genomic Variants → [[DECIPHER>>url:https://decipher.sanger.ac.uk/]]
41 41  
42 42  ----
43 43  
44 -=== **3. Diagnostic Framework** ===
51 +== **1. Register for Access** ==
45 45  
46 -==== **Axes of Diagnosis** ====
53 +* Each external database requires **individual registration and access approval**.
54 +* Ensure compliance with **ethical approvals and data usage agreements** before integrating datasets into Neurodiagnoses.
55 +* Some repositories may require a **Data Usage Agreement (DUA)** for sensitive medical data.
47 47  
48 -The framework organizes diagnostic data into three axes:
57 +----
49 49  
50 -1. **Etiology**: Genetic and environmental risk factors.
51 -1. **Molecular Markers**: Biomarkers such as amyloid-beta, tau, and alpha-synuclein.
52 -1. **Neuroanatomical Correlations**: Results from neuroimaging (e.g., MRI, PET).
59 +== **2. Download & Prepare Data** ==
53 53  
54 -==== **Recommendation System** ====
61 +* Download datasets while adhering to **database usage policies**.
62 +* Ensure files meet **Neurodiagnoses format requirements**:
55 55  
56 -* Suggests additional tests or biomarkers if gaps are detected in the data.
57 -* Prioritizes tests based on clinical impact and cost-effectiveness.
64 +|=**Data Type**|=**Accepted Formats**
65 +|**Tabular Data**|.csv, .tsv
66 +|**Neuroimaging**|.nii, .dcm
67 +|**Genomic Data**|.fasta, .vcf
68 +|**Clinical Metadata**|.json, .xml
58 58  
70 +* **Mandatory Fields for Integration**:
71 +** **Subject ID**: Unique patient identifier
72 +** **Diagnosis**: Standardized disease classification
73 +** **Biomarkers**: CSF, plasma, or imaging biomarkers
74 +** **Genetic Data**: Whole-genome or exome sequencing
75 +** **Neuroimaging Metadata**: MRI/PET acquisition parameters
76 +
59 59  ----
60 60  
61 -=== **4. Computational Workflow** ===
79 +== **3. Upload Data to Neurodiagnoses** ==
62 62  
63 -1. **Data Loading**: Import data from storage (Drive or Bucket).
64 -1. **Feature Engineering**: Generate derived features from the raw data.
65 -1. **Model Training**:
66 -1*. Split data into training, validation, and test sets.
67 -1*. Train models with cross-validation to ensure robustness.
68 -1. **Evaluation**:
69 -1*. Metrics: Accuracy, F1-Score, AUIC for interpretability.
70 -1*. Compare against baseline models and domain benchmarks.
81 +=== **Option 1: Upload to EBRAINS Bucket** ===
71 71  
83 +* Location: **EBRAINS Neurodiagnoses Bucket**
84 +* Ensure **correct metadata tagging** before submission.
85 +
86 +=== **Option 2: Contribute via GitHub Repository** ===
87 +
88 +* Location: **GitHub Data Repository**
89 +* Create a **new folder under /data/** and include a **dataset description**.
90 +* **For large datasets**, contact project administrators before uploading.
91 +
72 72  ----
73 73  
74 -=== **5. Validation** ===
94 +== **4. Integrate Data into AI Models** ==
75 75  
76 -==== **Internal Validation** ====
96 +* Open **Jupyter Notebooks** on EBRAINS to run **preprocessing scripts**.
97 +* **Standardize neuroimaging and biomarker formats** using harmonization tools.
98 +* Use **machine learning models** to handle **missing data** and **feature extraction**.
99 +* Train AI models with **newly integrated patient cohorts**.
77 77  
78 -* Test the system using simulated datasets and known clinical cases.
79 -* Fine-tune models based on validation results.
101 +**Reference**: See docs/data_processing.md for detailed instructions.
80 80  
81 -==== **External Validation** ====
103 +----
82 82  
83 -* Collaborate with research institutions and hospitals to test the system in real-world settings.
84 -* Use anonymized patient data to ensure privacy compliance.
105 +== **AI-Driven Biomarker Categorization** ==
85 85  
107 +Neurodiagnoses employs **AI models** for biomarker classification:
108 +
109 +|=**Model Type**|=**Application**
110 +|**Graph Neural Networks (GNNs)**|Identify shared biomarker pathways across diseases
111 +|**Contrastive Learning**|Distinguish overlapping vs. unique biomarkers
112 +|**Multimodal Transformer Models**|Integrate imaging, omics, and clinical data
113 +
86 86  ----
87 87  
88 -=== **6. Collaborative Development** ===
116 +== **Collaboration & Partnerships** ==
89 89  
90 -The project is open to contributions from researchers, clinicians, and developers. Key tools include:
118 +=== **Partnering with Data Providers** ===
91 91  
92 -* **Jupyter Notebooks**: For data analysis and pipeline development.
93 -** Example: [[probabilistic imputation>>https://drive.ebrains.eu/f/4f69ab52f7734ef48217/]]
94 -* **Wiki Pages**: For documenting methods and results.
95 -* **Drive and Bucket**: For sharing code, data, and outputs.
96 -* **Collaboration with related projects: **For instance: [[//Beyond the hype: AI in dementia – from early risk detection to disease treatment//>>https://www.lethe-project.eu/beyond-the-hype-ai-in-dementia-from-early-risk-detection-to-disease-treatment/]]
120 +Neurodiagnoses seeks partnerships with data repositories to:
97 97  
122 +* Enable **API-based data integration** for real-time processing.
123 +* Co-develop **harmonized AI-ready datasets** with standardized annotations.
124 +* Secure **funding opportunities** through joint grant applications.
125 +
126 +**Interested in Partnering?**
127 +
128 +* If you represent a **research consortium or database provider**, reach out to explore **data-sharing agreements**.
129 +* **Contact**: [[info@neurodiagnoses.com>>mailto:info@neurodiagnoses.com]]
130 +
98 98  ----
99 99  
100 -=== **7. Tools and Technologies** ===
133 +== **Final Notes** ==
101 101  
102 -* **Programming Languages**: Python for AI and data processing.
103 -* **Frameworks**:
104 -** TensorFlow and PyTorch for machine learning.
105 -** Flask or FastAPI for backend services.
106 -* **Visualization**: Plotly and Matplotlib for interactive and static visualizations.
107 -* **EBRAINS Services**:
108 -** Collaboratory Lab for running Notebooks.
109 -** Buckets for storing large datasets.
135 +Neurodiagnoses continuously expands its **data ecosystem** to support **AI-driven clinical decision-making**. Researchers and institutions are encouraged to **contribute new datasets and methodologies**.
136 +
137 +**For additional technical documentation**:
138 +
139 +* **GitHub Repository**: [[Neurodiagnoses GitHub>>url:https://github.com/neurodiagnoses]]
140 +* **EBRAINS Collaboration Page**: [[EBRAINS Neurodiagnoses>>url:https://ebrains.eu/collabs/neurodiagnoses]]
141 +
142 +**If you experience issues integrating data**, open a **GitHub Issue** or consult the **EBRAINS Neurodiagnoses Forum**.
143 +
144 +----
145 +
146 +This **updated methodology** now incorporates [[https:~~/~~/github.com/Fundacion-de-Neurociencias/neurodiagnoses/blob/main/data/biomarker_ontology>>https://Neuromarker]] for standardized biomarker classification, enabling **cross-disease AI training** across neurodegenerative disorders.